Aphasia

Note: When reviewing the findings, it is important to note that they are always made according to randomized clinical trial (RCT) criteria – specifically as compared to a control group. To clarify, if a treatment is “effective” it implies that it is more effective than the control treatment to which it was compared. Non-randomized studies are no longer included when there is sufficient research to indicate strong evidence (level 1a) for an outcome.

This module contains 34 studies, where 21 of them are high quality randomized clinical trials (RCTs), 11 are fair quality RCTs, and 2 are non-RCTs. The majority of interventions (18 studies) were studied among patients with chronic stroke (i.e. 6 months or more post-stroke).

Overall, we identified different interventions for post-stroke aphasia and those include: constraint-induced aphasia therapy; speech language therapy, task-oriented aphasia therapy; semantic/phonological training, action-embedded therapy, intentional gestures and visual gestural cueing, supported communication, technology-assisted training (computer and devices), behavioral aphasia therapy, cognitive linguistic therapy, and narrative aphasia intervention.

Please click here to see the Authors’ Results Table.

Acute phase - Constraint-induced aphasia therapy

AphasiaNot effective1a

Two high quality RCT (Ciccone et al., 2016; Woldag et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on aphasia severity in patients with acute stroke.

The first high quality RCT (Ciccone et al., 2016) randomized patients to receive CIAT or individual conventional speech language therapy. Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient at post-treatment (4-5 weeks) and follow-up (12 and 26 weeks). No between-group differences were found at any time point. 

The second high quality RCT (Woldag et al., 2017) randomized patients to receive CIAT, high-intensity conventional communication group language therapy or low-intensity individual/group speech language therapy. Aphasia was measured by the Aachen Aphasia Test (AAT: 50-item Token test, Repetition, Written language, Naming, Comprehension, Profile level scores) at post-treatment (2 weeks). No between-group differences were found. 

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that CIAT is not more effective than comparison interventions (individual conventional speech language therapy; high-intensity conventional communication group language therapy; low-intensity individual/group speech language therapy) in improving aphasia in patients with acute stroke.  

Communication accuracy/efficiencyNot effective1b

One high quality RCT (Ciccone et al., 2016) investigated the effect of constraint-induced aphasia therapy (CIAT) on communication accuracy/efficiency in patients with acute stroke. This high quality RCT randomized patients to receive CIAT or individual conventional speech language therapy. Communication accuracy/efficiency was measured by a Discourse Analysis score (percent correct information units produced per minute) at post-treatment (4-5 weeks) and follow-up (12 and 26 weeks). No between-group differences were found at any time point. 

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that CIAT is not more effective than a comparison intervention (individual conventional speech language therapy) in improving communication accuracy/efficiency in patients with acute stroke.

Communication quantity/qualityEffective1b

One high quality RCT (Woldag et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on communication quantity/quality in patients with acute stroke. This high quality RCT randomized patients to receive CIAT, high-intensity conventional communication group language therapy or low-intensity individual/group speech language therapy. Communication quantity/quality was measured by the Communicative Activity Log (CAL – Quality, Quantity scores) at post-treatment (2 weeks). A significant between-group difference was found on one measure (CAL – Quality score), favoring CIAT vs. high-intensity conventional communication group language therapy. No other significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that CIAT is more effective than a comparison intervention (high-intensity conventional communication group language therapy) in improving communication quality in patients with acute stroke.
Note: CIAT was not more effective than low-intensity individual/group speech language therapy in improving communication quality; CIAT was not more effective than comparison interventions (high-intensity conventional communication group language therapy) in improving communication quantity.

Quality of lifeNot effective1b

One high quality RCT (Ciccone et al., 2016) investigated the effect of constraint-induced aphasia therapy (CIAT) on quality of life in patients with acute stroke. This high quality RCT randomized patients to receive CIAT or individual conventional speech language therapy. Quality of life was measured by the Stroke and Aphasia Quality of Life Scale at post-treatment (4-5 weeks) and follow-up (12 and 26 weeks). No between-group difference was found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that CIAT is not more effective than a comparison intervention (individual conventional speech language therapy) in improving quality of life in patients with acute stroke.

Acute phase - Speech language therapy

AphasiaNot effective1b

One high quality RCT (Laska et al., 2011) and one fair quality RCT (Mattioli et al., 2014) investigated the effect of speech language therapy on aphasia in patients with acute stroke.

The high quality RCT (Laska et al., 2011) randomized patients to receive speech language therapy or no treatment. Aphasia was measured by the Norsk Grunntest for Afasi (NGA: Aphasia coefficient) at post-treatment (21 days) and at follow-up (6 months). No significant between group difference was found at either time point.

The fair quality RCT (Mattioli et al., 2014) randomized patients to receive speech language therapy or no treatment. Aphasia was measured by the Aachen Aphasia Test (AAT: Repetition, Naming, Written language, Oral comprehension, Written comprehension, 50-item Token Test, Spontaneous language subtests) at post-treatment (2 weeks) and at follow-up (6 months). Significant between-group differences were found on only two subtests (AAT: Naming, Written language) at post-treatment, favoring speech language therapy vs. no treatment. Improvements were maintained at follow-up.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that speech language therapy is not more effective than no treatment in improving aphasia in patients with acute stroke.

Carer wellbeingNot effective1b

One high quality RCT (Bowen et al., 2012) investigated the effect of speech language therapy on the wellbeing of carers of patients with acute stroke. This high quality RCT randomized patients to receive speech language therapy or social contact with an untrained conversation partner for 16 weeks. Carer wellbeing was measured by the Carers of Older People in Europe Index (COPE: Negative/Positive impact, Quality of support) at follow-up (6 months post-stroke). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than a comparison intervention (social contact with an untrained conversation partner) in improving the wellbeing of carers of patients with acute stroke.

Functional communication abilityNot effective1b

One high quality RCT (Bowen et al., 2012) investigated the effect of speech language therapy on functional communication ability in patients with acute stroke. This high quality RCT randomized patients to receive speech language therapy or social contact with an untrained conversation partner for 16 weeks. Functional communication ability was measured by the Therapy Outcome Measure (TOM: Communicative Activity Scale) at follow-up (6 months post-stroke). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than a comparison intervention (social contact with an untrained conversation partner) in improving functional communication ability in patients with acute stroke.

Self-perception of communication effectivenessNot effective1b

One high quality RCT (Bowen et al., 2012) investigated the effect of speech language therapy on self-perception of communication effectiveness in patients with acute stroke. This high quality RCT randomized patients to receive speech language therapy or social contact with an untrained conversation partner for 16 weeks. Patients’ and carers’ evaluation of patients’ communication effectiveness was measured by the Communication Outcomes After Stroke (COAST) and Carer COAST (respectively) at follow-up (6 months post-stroke). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than a comparison intervention (social contact with an untrained conversation partner) in improving patients’ and carers’ perception of communication effectiveness in patients with acute stroke.

Verbal communicationNot effective1b

One high quality RCT (Laska et al., 2011) investigated the effect of speech language therapy on verbal communication in patients with acute stroke. This high quality RCT randomized patients to received speech language therapy or no treatment. Verbal communication skills were measured by the Amsterdam-Nijmegen Everyday Language Test at post-treatment (21 days) and at follow-up (6 months). No significant between group difference was found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than no treatment in improving verbal communication in patients with acute stroke.

Acute phase - Very early intervention

AphasiaEffective2b

One non-randomized design study (Godecke et al., 2014) investigated the effect of very early intervention on aphasia in patients with acute stroke. This non-randomized design study allocated patients to receive a multimodal intervention or usual care (sample drawn from Godecke et al., 2012 cohort). Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient (percentage maximum potential recovery) at post-treatment (5 weeks) and follow-up (26 weeks post-stroke). Significant between-group differences were found at post-treatment, favoring very early intervention vs. usual care. Improvements were maintained at follow-up.

Conclusion: There is limited evidence (Level 2b) from one non-randomized design study that very early intervention is more effective than a comparison intervention (usual care) in improving aphasia in patients with acute stroke.

Communication accuracy/efficiencyEffective2b

One non-randomized design study (Godecke et al., 2014) investigated the effect of very early intervention on communication accuracy/efficiency in patients with acute stroke. This non-randomized design study allocated patients to receive a multimodal intervention or usual care (sample drawn from Godecke et al., 2012 cohort). Communication accuracy/efficiency was measured by a Discourse Analysis score at post-treatment (5 weeks) and follow-up (26 weeks post-stroke). A significant between-group difference was found at post-treatment, favoring very early intervention vs. usual care. Improvements were not maintained at follow-up.

Conclusion: There is limited evidence (Level 2b) from one non-randomized design study that very early intervention is more effective than a comparison intervention (usual care) in improving communication accuracy/efficiency in patients with acute stroke.

Subacute phase - Constraint-induced aphasia therapy

AphasiaNot effective1b

One high quality RCT (Sickert et al., 2014) investigated the effect of modified Constraint Induced Aphasia Therapy (mCIAT) on aphasia in patients with subacute stroke. This high quality RCT randomized patients to receive mCIAT or conventional aphasia therapy. Aphasia was measured by the Aachener Aphasia Test (Spontaneous speech, Token Test, Repetition, Written language, Naming, Comprehension) at post-treatment (3 weeks) and follow-up (8 weeks, 1 year). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that mCIAT is not more effective that a comparison intervention (conventional therapy) in improving aphasia in patients with subacute stroke.

Communication quantity/qualityNot effective1b

One high quality RCT (Sickert et al., 2014) investigated the effect of modified Constraint Induced Aphasia Therapy (mCIAT) on communication quantity/quality in patients with subacute stroke. This high quality RCT randomized patients to receive mCIAT or conventional aphasia therapy. Communication quantity/quality was measured by the Communicative Activity Log (CAL – Quality, Quantity scores: patient/relative scores) at post-treatment (3 weeks) and follow-up (8 weeks, 1 year). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that mCIAT is not more effective that a comparison intervention (conventional therapy) in improving communication quantity/quality in patients with subacute stroke.

Subacute phase - Semantic vs. phonological treatment approaches

Language processingEffective1b

One high quality RCT (Doesborgh et al., 2004a) compared the effect of semantic vs. phonological intervention approaches on language processingin patients with subacute stroke. This high quality RCT randomized patients to receive semantic (interpretation-focused) or phonological (sound structure focused) treatment approaches. Language processing skills were measured by the Semantic Association Test [semantic measure] and the Psycholinguistic Assessment of Language Processing in Aphasia (PALPA: synonym judgement [semantic measure], nonword repetition, auditory lexical decision [phonological measures]) at post-treatment (10-12 months). A significant between-group difference was found on one phonological measure (PALPA: auditory lexical decision), favoring phonological vs. semantic treatment approach.
Note: A statistically-significant within-group improvement in one semantic measure (Semantic Association Test) was seen following semantic treatment, and an improvement in both phonological measures was seen following phonological treatment.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that a phonological treatment approach is more effective than a semantic treatment approach in improving phonological language processing skills in patients with subacute stroke.

Verbal communicationNot effective1b

One high quality RCT (Doesborgh et al., 2004a) compared the effect of semantic vs. phonological intervention approaches on verbal communication in patients with subacute stroke. This high quality RCT randomized patients to receive semantic (interpretation-focused) or phonological (sound structure focused) treatment approaches. Verbal communication skills were measured by the Amsterdam Nijmegen Everyday Language Test (ANELT-A: final score, mean improvement) at post-treatment (10-12 months). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that a semantic treatment approach is not more effective than a phonological treatment approach in improving verbal communication in patients with subacute stroke.

Subacute phase - Speech language therapy

Carers' perception of patient's languageNot effective1b

One high quality RCT (Lincoln et al., 1984) investigated the effect of speech language therapy on carers’ perception of language in patients with subacute stroke. This high quality RCT randomized patients to receive speech language therapy or no treatment. Carer’s perception of patient’s expressive and receptive language was measured by the Speech Questionnaire at mid-treatment (12 weeks) and post-treatment (24 weeks). No significant between-group difference was found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than no treatment in improving carers’ perception of language of patients with subacute stroke.

CommunicationNot effective1b

One high quality RCT (Lincoln et al., 1984) investigated the effect of speech language therapy on communication in patients with subacute stroke. This high quality RCT randomized patients to receive speech language therapy or no treatment. Communication skills were measured by the Porch Index of Communicative Ability and the Functional Communication Profile at mid-treatment (12 weeks) and post-treatment (24 weeks). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that speech language therapy is not more effective than no treatment in improving communication skills in patients with subacute stroke.

Subacute phase - Task-oriented aphasia therapy

CommunicationNot effective1b

One high quality RCT (Hartman & Laundau, 1987) investigated the effect of task-oriented aphasia therapy in improving communication in patients with subacute stroke. This high quality RCT randomized patients to receive task-oriented aphasia therapy or nondirective counseling and conversation. Communication skills were measured by the Porch Index of Communicative Ability at post-treatment (6 months) and at follow-up (10 months post-stroke). No significant between-group difference was found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that task-oriented aphasia therapy is not more effective than a comparison intervention (nondirective counseling and conversation) in improving communication skills in patients with subacute stroke.

Chronic phase - Action-embedded therapy

AphasiaEffective1b

One high quality RCT (Stahl et al., 2016) investigated the effect of action-embedded therapy on aphasia in patients with chronic stroke. This high quality cross-over design RCT randomized patients to receive intensive language action therapy (ILAT) or naming therapy for 6 days, then the other intervention for a further 6 days; participants received no therapy for 6 days between intervention periods. Language was measured by the Aachen Aphasia Test (AAT: mean score, production score) at post-treatment (6 days, 18 days). Significant between-group differences were found on both measures at both post-treatment time points, favoring ILAT vs. naming therapy.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive language action therapy is more effective than a comparison intervention (naming therapy) in improving aphasia in patients with chronic stroke.

Word retrieval response timeNot effective2a

One fair quality RCT (Drummond & Rentschler, 1981) investigated the effect of action-embedded therapy on word retrieval response time in patients with chronic stroke. This fair quality RCT randomized patients to receive visual-gestural cueing training or no gesture cueing; both groups received auditory-verbal cueing. Word retrieval response time was measured by the response time to 10 AMERIND Gestural Code nouns and 10 non-AMERIND Gestural Code nouns at post-treatment (2 weeks). No significant between-group difference was found.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that visual-gestural cueing training is not more effective than a comparison intervention (no gesture cueing) in improving word retrieval response time in patients with chronic stroke.

Chronic phase - Communication partner program

AphasiaNot effective2b

One non-randomized study (Lyon et al., 1997) investigated the effect of a communication partner program on aphasia in patients with chronic stroke. This non-randomized study assigned patients and their carers to a communication partner training program with a community volunteer. Aphasia was measured by the Boston Diagnostic Aphasia Examination (BDAE: overall mean percentile) at post-treatment (20 weeks). No significant improvements from pre- to post-treatment were found.

Conclusion: There is limited evidence (Level 2b) from one non-randomized study that a communication partner training program with a community volunteer is not effective in improving aphasia in patients with chronic stroke.

CommunicationNot effective2b

One non-randomized study (Lyon et al., 1997) investigated the effect of a communication partner program on communication in patients with chronic stroke. This non-randomized study assigned patients and their carers to a communication partner training program with a community volunteer. Communication skills were measured by the Communication Abilities in Daily Living (CADL) and the non-standardized Communication Readiness and Use Index (CRUI: patient, carer, communication partner scores) at post-treatment (20 weeks). Significant improvements from pre- to post-treatment were found on the CRUI.
Note:  an improvement in communication readiness and use (CRUI) was also seen among patient triads whose treatment was deferred.

Conclusion: There is limited evidence (Level 2b) from one non-randomized study that a communication partner training program with a community volunteer is not effective in improving communication in patients with chronic stroke.
Note: However, the program was effective in improving patients, carers’ and communication partners’ reports of communication in patients with chronic stroke.

Participation in conversationEffective1b

One high quality RCT (Kagan et al., 2001) investigated the effect of a communication partner program on participation in conversation in patients with chronic stroke. This high quality RCT randomized patients to interact with a conversation partner trained in the “Supported Conversation for Adults with Aphasia” program, or with an untrained volunteer. Participation in conversation was measured by the Measure of Participation in Conversation for Adults with Aphasia (MPCA: Interaction, Transaction scores) at post-treatment (1-day workshop). Significant between-group differences were found on both scores, favoring the “Supported Conversation for Adults with Aphasia” program vs. social interactions with an untrained volunteer.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that a communication partner program is more effective than a comparison intervention (social interactions with an untrained volunteer) in improving participation in conversation in patients with chronic stroke.

Well-beingNot effective2b

One non-randomized study (Lyon et al., 1997) investigated the effect of a communication partner program on well-being in patients with chronic stroke. This non-randomized study assigned patients and their carers to a communication partner training program with a community volunteer. Well-being was measured by the Affect Balance Scale (ABS) and the non-standardized Psychosocial Wellbeing Index (PWI:  patient, carer, communication partner scores) at post-treatment (20 weeks). A significant improvement from pre- to post-treatment was found on the PWI scores.
Note: an improvement in wellbeing (PWI) was also seen among patient triads whose treatment was deferred.

Conclusion: There is limited evidence (Level 2b) from one non-randomized study that a communication partner training program with a community volunteer is not effective in improving well-being in patients with chronic stroke.
Note: However, the program was effective in improving patients’, carers’ and communication partners’ reported perception of well-being in patients with chronic stroke.

Chronic phase - Constraint-induced aphasia therapy

AphasiaNot effective1b

One high quality RCT (Kurland et al., 2016) and one fair quality RCT (Maher et al., 2006) investigated the effect of constraint-induced aphasia therapy (CIAT) on aphasia in patients with chronic stroke.

The high quality RCT (Kurland et al., 2016) randomized patients to receive interactive language action therapy – constrained (ILAT- constrained) or a modified version of Promoting Aphasic Communicative Effectiveness – unconstrained (mPACE -unconstrained). Aphasia was measured by the Boston Diagnostic Aphasia Examination (BDAE: Aphasia severity, Auditory comprehension, Sentence repetition, Cookie Theft Description task – changes in content units) at post-treatment (2 weeks). No significant between-group difference was found.

The fair quality RCT (Maher et al., 2006) assigned patients to receive CIAT or mPACE. Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient at post-treatment (2 weeks). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that constraint-induced aphasia therapy is not more effective than a comparison intervention (Promoting Aphasic Communicative Effectiveness) in improving aphasia in patients with chronic stroke.

CommunicationNot effective1b

One high quality RCT (Kurland et al., 2016) investigated the effect of constraint-induced aphasia therapy (CIAT) on communication in patients with chronic stroke. This high quality RCT randomized patients to receive interactive language action therapy – constrained (ILAT-constrained) or a modified version of Promoting Aphasic Communicative Effectiveness – unconstrained (mPACE-unconstrained). Communication skills were measured by the Porch Index of Communicative Abilities at post-treatment (2 weeks). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that constraint-induced aphasia therapy is not more effective than a comparison intervention (modified version of Promoting Aphasic Communicative Effectiveness – unconstrained) in improving communication skills in patients with chronic stroke.

NamingNot effective1a

Two high quality RCTs (Szaflarski et al., 2015; Kurland et al., 2016) and two fair quality RCTs (Maher et al., 2006; Nenert et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on naming in patients with chronic stroke.

The first high-quality RCT (Szaflarski et al., 2015) randomized patients to receive CIAT or no treatment for 10 consecutive weekdays. Naming skills were measured by the Boston Naming Test (BNT) at follow-up (1 week and 3 months post-treatment). No significant between-group difference was found. 

The second high quality RCT (Kurland et al., 2016) randomized patients to receive interactive language action therapy – constrained (ILAT-constrained) or a modified version of Promoting Aphasic Communicative Effectiveness – unconstrained (mPACE-unconstrained). Naming skills were measured by the Object and Action Naming Battery (objects and verbs/trained and untrained items) and BNT at post-treatment (2 weeks). No significant between-group differences were found.

The first fair quality RCT (Maher et al., 2006) assigned patients to receive CIAT or mPACE. Naming skills were measured by the BNT and Action Naming Test at post-treatment (2 weeks). No significant between-group differences were found.

The second fair quality RCT (Nenert et al., 2017) randomized patients to receive CIAT or no treatment. Naming skills were measured by the BNT at post-treatment (10 days). No significant between-group difference was found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs and two fair quality RCTs that constraint-induced aphasia therapy is not more effective than comparison interventions (no treatment, Promoting Aphasic Communicative Effectiveness) in improving naming skills in patients with chronic stroke.

Noun recallNot effective2a

One fair quality RCT (Nenert et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on noun recall in patients with chronic stroke. This fair quality RCT (Nenert et al., 2017) randomized patients to receive CIAT or no treatment. Noun recall was measured by a noun recall task at post-treatment (10 days). No significant between-group difference was found.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that constraint-induced aphasia therapy is not more effective than no treatment in improving noun recall in patients with chronic stroke.

Receptive languageNot effective1b

One high quality RCT (Szaflarski et al., 2015) and one fair quality RCT (Nenert et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on receptive language in patients with chronic stroke.

The high quality RCT (Szaflarski et al., 2015) randomized patients to receive CIAT or no treatment for 10 consecutive weekdays. Receptive language skills were measured by the Boston Diagnostic Aphasia Examination (BDAE: Complex ideation subtest) and the Peabody Picture Vocabulary Test III (PPVT-III) at follow-up (1 week and 3 months post-treatment). No significant between-group differences were found. 

The fair quality RCT (Nenert et al., 2017) randomized patients to receive CIAT or no treatment. Receptive language skills were measured by the PPVT-IV at post-treatment (10 days). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that constraint-induced aphasia therapy is not more effective than no treatment in improving receptive language skills in patients with chronic stroke.

Subjective communicationNot effective1b

One high quality RCT (Szaflarski et al., 2015) and one fair quality RCT (Nenert et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on subjective communication in patients with chronic stroke.

The high quality RCT (Szaflarski et al., 2015) randomized patients to receive CIAT or no treatment for 10 consecutive weekdays. Subjective communication skills (fluency, frequency of use, frequency of misunderstandings) were measured by the Mini-Communicative Activities Log (Mini-CAL) at follow-up (1 week and 3 months post-treatment). A significant between-group difference was found at follow-up (3 months post-treatment), favoring CIAT vs. no treatment.

The fair quality RCT (Nenert et al., 2017) randomized patients to receive CIAT or no treatment. Subjective communication skills were measured by the Mini-CAL at post-treatment (10 days). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that constraint-induced aphasia therapy is not more effective than no treatment in improving subjective communication skills in patients with chronic stroke.
Note: However, CIAT was more effective than no treatment in the long term.

Verbal function/fluencyNot effective1b

One high quality RCT (Szaflarski et al., 2015) and one fair quality RCT (Nenert et al., 2017) investigated the effect of constraint-induced aphasia therapy (CIAT) on verbal function and fluency in patients with chronic stroke.

The high quality RCT (Szaflarski et al., 2015) randomized patients to receive CIAT or no treatment for 10 consecutive weekdays. Verbal function/fluency was measured by the Semantic Fluency Test (SFT) and the Controlled Oral Word Association Test (COWAT) at follow-up (1 week and 3 months post-treatment). No significant between-group difference was found. 

The fair quality RCT (Nenert et al., 2017) randomized patients to receive CIAT or no treatment. Verbal function/fluency was measured by the SFT and the COWAT (raw score) at post-treatment (10 days). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that constraint-induced aphasia therapy is not more effective than no treatment in improving verbal function/fluency.

Chronic phase - Group communication

AphasiaEffective1b

One high quality RCT (Elman & Burnstein-Ellis, 1999) investigated the effect of group communication on aphasia  in patients with chronic stroke. This high quality RCT randomized patients to receive group communication treatment or delayed group communication treatment (no treatment). Aphasia was measured by the Western Aphasia Battery-Aphasia Quotient (WAB-AQ) at post-treatment (4 months) and follow-up (5 months). A significant between-group difference was found at post-treatment, favoring group communication treatment vs. no treatment. This between-group difference was not maintained at follow-up.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that group communication is more effective than a comparison intervention (no treatment) in improving aphasia in patients with chronic stroke.

CommunicationEffective1b

One high quality RCT (Elman & Burnstein-Ellis, 1999) investigated the effect of group communication on functional communication in patients with chronic stroke. This high quality RCT randomized patients to receive group communication treatment or delayed group communication treatment (no treatment). Communication skills were measured by the Communicative Abilities in Daily Living Test (CADL) and the Shortened Porch Index of Communicative Ability (SPICA) at post-treatment (4 months) and follow-up (5 months). A significant between-group difference was found on one measure (CADL), favoring group communication treatment vs. no treatment. This between-group difference was not maintained at follow-up.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that group communication is more effective than a comparison intervention (no treatment) in improving communication skills in patients with chronic stroke.

Chronic phase - Intentional gestures

AphasiaNot effective2a

One fair quality RCT (Altmann et al., 2014) investigated the effect of intentional gestures on aphasia in patients with chronic stroke. This fair quality RCT randomized patients to receive intensive anomia treatment using intentional left-hand gestures or intensive anomia treatment without gestures. Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient at post-treatment (3 weeks) and follow-up (3 months). No significant between-group difference was found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that intentional gestures is not more effective than comparison interventions without gestures (intensive anomia treatment) in improving aphasia in patients with chronic stroke.

Discourse quantity/qualityNot effective2a

One fair quality RCT (Altmann et al., 2014) investigated the effect of intentional gestures on discourse quality/quantity in patients with chronic stroke. This fair quality RCT randomized patients to receive intensive anomia treatment using intentional left-hand gestures or intensive anomia treatment without gestures. Discourse quantity/quality was measured according to Discourse Quantity (Utterances, Words, Verbs, Nouns) and Discourse Quality (Grammatical, Correct information units, Propositions, Utterances with new information) at post-treatment (3 weeks) and follow-up (3 months). A significant between-group difference was found on only one measure (Discourse Quantity: Words) at follow-up, favoring intentional left-hand gestures + intensive anomia treatment vs. intensive anomia treatment alone.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that intentional gestures is not more effective than comparison interventions without gestures (intensive anomia treatment) in improving discourse quantity/quality in patients with chronic stroke.

Naming and retrievalNot effective2a

Two fair quality RCTs (Altmann et al., 2014; Benjamin et al., 2014) investigated the effect of intentional gestures on naming and retrieval skills in patients with chronic stroke.

The first fair quality RCT (Altmann et al., 2014) randomized patients to receive intensive anomia treatment using intentional left-hand gestures or intensive anomia treatment without gestures. Naming and retrieval skills were measured by the Picture Naming probes, Category-Generation probes, and the Boston Naming Test at post-treatment (3 weeks) and follow-up (3 months). No significant between-group differences were found at either time point.

The second fair quality RCT (Benjamin et al., 2014) randomized patients to receive picture naming and category-member generation training using intentional left-hand gestures or picture naming and category-member generation training without gestures. Naming and retrieval skills were measured by the Picture Naming and Category-Generation probes at post-treatment (6 weeks) and follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from two fair quality RCTs that intentional gestures is not more effective than comparison interventions without gestures (intensive anomia treatment, picture naming and category-member generation) in improving naming and retrieval skills in patients with chronic stroke.

Chronic phase - Speech language therapy

AphasiaEffective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on aphasia in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Aphasia was measured by the Sprachsystematisches APhasieScreening (SAPS: Total, Phonology, Lexicon, Syntax, Language comprehension, Language production scores) at post-treatment (3 weeks) and follow-up (6 months). Significant between-group differences in change scores from baseline to post-treatment were found (SAPS: Total, Lexicon, Syntax, Language comprehension, Language production). A significant difference was found on one measure at follow-up (SAPS: Phonology).

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is more effective than no treatment in improving aphasia in patients with chronic stroke.

Functional communicationNot effective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on functional communication in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy for 3 weeks or no treatment. Functional communication was measured by the Communication Effectiveness Index at follow-up (6 months). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is not more effective than no treatment in improving long-term functional communication in patients with chronic stroke.

Nonverbal learningNot effective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on nonverbal learning in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Nonverbal learning was measured by the Nonverbal Learning Test at post-treatment (3 weeks) and follow-up (6 months). No significant between-group difference was found at either time point. 

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is not more effective than no treatment in improving nonverbal learning in patients with chronic stroke.

Quality of lifeEffective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on quality of life in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Quality of life was measured by the Stroke and Aphasia Quality of Life Scale-39 (SAQoL-39 – Total, Physical, Communication, Psychosocial, Energy scores) at post-treatment (3 weeks) and follow-up (6 months). A significant between-group difference in change scores from baseline to post-treatment was found on only one measure (SAQoL-39 – Total score).

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is more effective than no treatment in improving quality of life in patients with chronic stroke.

Stroke severityNot effective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on stroke severity in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Stroke severity was measured by the modified Rankin Scale at post-treatment (3 weeks) and follow-up (6 months). No significant between-group difference was found at either time point. 

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is not more effective than no treatment in reducing stroke severity in patients with chronic stroke.

Verbal communicationEffective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on verbal communication in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Verbal communication skills were measured by the Amsterdam Nijmegen Everyday Language Test (ANELT: A-scale, B-scale) at post-treatment (3 weeks) and follow-up (6 months). A significant between-group difference in change scores from baseline to post-treatment was found (ANALT: A-scale).

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is more effective than no treatment in improving verbal communication skills in patients with chronic stroke.

Visual attention and executive functionNot effective1b

One high quality RCT (Breitenstein et al., 2017) investigated the effect of speech language therapy on visual attention and executive function in patients with chronic stroke. This high quality RCT randomized patients to receive intensive speech language therapy or no treatment. Visual attention and executive function were measured by the Trail Making Test A and B at post-treatment (3 weeks) and follow-up (6 months). No significant between-group differences were found at either time point. 

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive speech language therapy is not more effective than no treatment in improving visual attention and executive function in patients with chronic stroke.

Chronic phase - Technology-assisted training

AphasiaConflicting4

Two fair quality RCTs (Katz & Wertz, 1992; Katz & Wertz, 1997) investigated the effect of technology-assisted training on aphasia in patients with chronic stroke.

The first fair quality RCT (Katz & Wertz, 1992) randomized patients to receive computer reading, non-language computer stimulation or no treatment. Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient (WAB-AQ) at post-treatment (6 months). No significant between-group difference was found.

The second fair quality RCT (Katz & Wertz, 1997) randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Aphasia was measured by the WAB-AQ at post-treatment (6 months). Comparison of computer reading vs. non-language computer stimulation revealed a significant difference favoring computer reading. Comparison of computer reading vs. no treatment revealed a significant difference favouring computer reading.
Note: Comparison of non-language computer stimulation vs. no treatment revealed no significant between-group difference.

Conclusion: There is conflicting evidence (Level 4) from two fair quality RCTs regarding the effect of technology-assisted training on aphasia in patients with chronic stroke. While one fair quality RCT found that computer reading was not more effective than comparison interventions (non-language computer stimulation, no treatment); another fair quality RCT found that computer reading was more effective than comparison interventions (non-language computer stimulation, no treatment) in improving aphasia in patients with stroke.
Note: The larger sample size in the second study might explain the found differences that were not detected in the first study.

CognitionNot effective1b

One high quality RCT (Nobis-Bosch et al., 2011) investigated the effect of technology-assisted training on cognition in patients with chronic stroke. This high quality cross-over design RCT randomized patients to receive intensive language training using the B.A.Bar electronic learning device or nonlinguistic cognitive training for 4 weeks, before crossing over to receive the other intervention for a further 4 weeks. Cognition was measured at post-treatment (4 weeks, 8 weeks) and follow-up (3 months) and included: auditory memory, measured by the Wechesler Memory Scale (auditory digit span); visual memory, measured by the Corsi Block Tapping Test; attention, measured by the Test of Attentional Performance (visual scanning subtest); and pattern recognition, measured by the Thurstone’s Primary Mental Ability Test (pattern recognition from subtest 10). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive language training using the B.A.Bar electronic learning device is not more effective than a comparison intervention (nonlinguistic cognitive training) in improving cognition in patients with chronic stroke.

CommunicationNot effective1b

One high quality RCT (Nobis-Bosch et al., 2011) and two fair quality RCTs (Katz & Wertz, 1992; Katz & Wertz, 1997) investigated the effect of technology-assisted training on communication in patients with chronic stroke.

The high quality cross-over design RCT (Nobis-Bosch et al., 2011) randomized patients to receive intensive language training using the B.A.Bar electronic learning device or nonlinguistic cognitive training for 4 weeks, before crossing over to receive the other intervention for a further 4 weeks. Communication skills were measured by a non-standardized dialogue test (linguistic score – trained/untrained items; communitive score – trained/untrained items), at post-treatment (4 weeks, 8 weeks) and follow-up (3 months). There were no significant between-group differences at either post-treatment timepoint. Significant between-group differences were found (communicative score – trained/untrained items) at follow-up, favoring the group that received nonlinguistic cognitive training followed by intensive language training using the B.A.Bar electronic learning device. 

The first fair quality RCT (Katz & Wertz, 1992) randomized patients to receive computer reading, non-language computer stimulation or no treatment. Communication skills were measured by the Porch Index of Communicative Ability (PICA: Overall score, Reading, Writing, Verbal modalities) at post-treatment (6 months). Comparison of computer reading vs. non-language computer stimulation showed significant between-group differences (PICA: Overall, Writing, Verbal scores), favouring computer reading. Comparison of computer reading vs. no treatment revealed significant differences (PICA:  Overall, Verbal scores), favouring computer reading.
Note: Comparison of non-language computer stimulation vs. no treatment revealed no significant differences.

The second fair quality RCT ( Katz & Wertz, 1997) randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Communication skills were measured by the PICA (Overall score, Auditory, Verbal, Pantomime, Visual, Reading, Copying, Writing scores) at post-treatment (6 months). Comparison of computer reading vs. non-language computer stimulation revealed significant differences (PICA: Overall, Verbal scores), favoring computer reading. Comparison of computer reading vs. no treatment revealed significant differences (PICA: Overall, Verbal, Pantomime scores), favouring computer reading.
Note: Comparison of non-language computer stimulation vs. no treatment revealed significant between-group differences (PICA: Pantomime score), favouring non-verbal computer stimulation.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that technology-assisted training is not more effective than comparison interventions (nonlinguistic cognitive training) in improving communication skills in patients with chronic stroke.
Note: However, two fair quality RCTs found that technology-assisted training is more effective than a comparison intervention (non-language computer stimulation) and no treatment in improving communication skills in patients with chronic stroke. Differences in findings could be attributed to the differences in interventions, study design/duration and/or outcome measures used.

ComprehenstionConflicting4

Two fair quality RCTs ( Katz & Wertz, 1997; Thompson et al., 2010) investigated the effect of technology-assisted training on comprehension in patients with chronic stroke.

The first fair quality RCT ( Katz & Wertz, 1997) randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Comprehension was measured by the Western Aphasia Battery – Comprehension subtest at post-treatment (6 months). No significant between-group difference was found.

The second fair quality RCT (Thompson et al., 2010) randomized patients to receive computer-automated Treatment of Underlying Forms (TUF), clinician-administered TUF or no treatment. Comprehension was measured by the Comprehension Probe (CP: Object relatives, Object clefts, Object wh-questions) and the Northwestern Assessment of Verbs and Sentences – Sentence Comprehension Test (NAVS-SCT: Object relatives, Object wh-questions, Subject relatives, Subject wh-questions) at post-treatment (5 weeks). Significant between-group differences were seen (CP – Object relatives; NAVS-SCT: Objects relatives), favoring the computer-automated TUF vs. no treatment. There were no significant differences between computer-automated and clinician-administered TUF.
Note: Differences between clinician-administered TUF and no treatment were not reported.

Conclusion: There is conflicting evidence (Level 4) from two fair quality RCTs regarding the effects of technology-assisted training on comprehension in patients with chronic stroke. While one fair quality RCT found that computer reading is not more effective than comparison interventions (non-language computer stimulation, no treatment), another fair quality RCT found that a computer-automated Treatment of Underlying Forms program is more effective than no treatment in improving comprehension in patients with chronic stroke.
Note: Differences in findings could be attributed to the difference in the interventions, study design/duration and/or outcome measures used.

NamingConflicting4

Two high quality RCTs (Doesborgh et al., 2004b; Palmer et al., 2012) and one fair quality RCT (investigated the effect of technology-assisted training on naming skills in patients with chronic stroke.

The first high quality RCT (Doesborgh et al., 2004b) randomized patients to receive a multicue computer training program or no treatment. Naming skills were measured by the Boston Naming Test at post-treatment (2 months). No significant between group difference was found.

The second high quality RCT (Palmer et al., 2012) randomized patients to receive computer treatment or no treatment; all patients received usual care. Naming skills were measured by the Object and Action Naming Battery at post-treatment (5 months) and follow-up (8 months). A significant between-group difference was found at post-treatment, favoring computer treatment vs. no treatment. Results did not remain significant at follow-up.

The fair quality RCT (Katz & Wertz, 1997) randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Word finding and semantic retrieval processes were measured by the Western Aphasia Battery – Naming scores at post-treatment (6 months). No between-group difference was found.

Conclusion: There is conflicting evidence (Level 4) regarding the effect of technology-assisted training on naming skills in patients with chronic stroke. While one high quality RCT and one fair quality RCT found that computer training programs were not more effective than comparison interventions (no treatment, non-language computer stimulation), another high quality RCT found that a computer program was more effective than no treatment.
Note: The differences in findings may be attributed to the differences in the interventions, design study/duration (2 vs. 5 months), and/or outcome measures used.

Reading comprehensionNot effective2a

One fair quality RCT (Katz & Wertz, 1992) investigated the effect of technology-assisted training on reading comprehension in patients with chronic stroke. This fair quality RCT randomized patients to receive computer reading, non-language computer stimulation or no treatment. Reading comprehension was measured by the C-CAT (a non-standardized assessment comprising 232 items from the computer reading program) at post-treatment (6 months). No significant between-group difference was found.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer reading is not more effective than comparison interventions (non-language computer stimulation, no treatment) in improving reading comprehension in patients with chronic stroke.

RepetitionEffective2a

One fair quality RCT (Katz & Wertz, 1997) investigated the effect of technology-assisted training on repetition in patients with chronic stroke. This fair quality RCT randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Repetition was measured by the Western Aphasia Battery – Repetition score at post-treatment (6 months). Comparison of computer reading vs. non-language computer stimulation revealed a significant difference, favoring computer reading. Comparison of computer reading vs. no treatment revealed a significant difference, favouring computer reading.
Note: Comparison of non-language computer stimulation vs. no treatment revealed a significant between-group difference, favouring non-verbal computer stimulation.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer reading is more effective than comparison interventions (non-language computer stimulation, no treatment) in improving repetition in patients with chronic stroke.

Sentence productionNot effective2a

One fair quality RCT (Thompson et al., 2010) investigated the effect of technology-assisted training on comprehension in patients with chronic stroke. This fair quality RCT randomized patients to receive computer-automated Treatment of Underlying Forms (TUF), clinician-administered TUF or no treatment. Comprehension was measured by the Production Probe (PP: Object relatives, Object clefts, Object wh-questions), the Northwestern Assessment of Verbs and Sentences – Sentence Production Priming Test (NAVS-SPPT: Object relatives, Object wh-questions, Subject relatives, Subject wh-questions), and the Cinderella narratives (CN: Mean length of utterance, Words per minute, Complex to simple sentence ratio, Noun to verb ratio, Open to closed class ratio, % grammatical sentences, % verbs with correct arguments) at post-treatment (5 weeks). Comparison of computer-automated TUF vs. no treatment revealed significant between-group differences (PP: Object relatives, Object clefts; NAVS-SPPT – Objects relatives), favoring computer-automated TUF. There were no significant differences between computer-automated and clinician-administered TUF.
Note: Differences between clinician-administered TUF and no treatment were not reported.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer-automated Treatment of Underlying Forms is not more effective than no treatment in improving sentence production in patients with chronic stroke.
Note: significant between-group differences were seen in only 2/3 of 7/14 measures.

Spontaneous speechNot effective1b

One high quality RCT (Nobis-Bosch et al., 2011) and one fair quality RCT (Katz & Wertz, 1997) investigated the effect of technology-assisted training on spontaneous speech in patients with chronic stroke.

The high quality RCT (Nobis-Bosch et al., 2011) randomized patients to receive intensive language training using the B.A.Bar electronic learning device or nonlinguistic cognitive training for 4 weeks, before crossing over to receive the other intervention for a further 4 weeks. Spontaneous speech was measured by a semi-standardized interview at post-treatment (4 weeks, 8 weeks) and follow-up (3 months). No significant between-group differences were found at any time point.

The fair quality RCT (Katz & Wertz, 1997) randomized patients to receive computer reading, non-language computer stimulation, or no treatment. Spontaneous speech was measured by the Western Aphasia Battery – Spontaneous speech score at post-treatment (6 months). No significant between-group difference was found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that technology-assisted training is not more effective than comparison interventions (nonlinguistic cognitive training, non-language computer stimulation, no treatment) in improving spontaneous speech in patients with chronic stroke.

Verbal communicationNot effective1a

Two high quality RCTs (Doesborgh et al., 2004b; Nobis-Bosch et al., 2011) investigated the effect of technology-assisted training on verbal communication in patients with chronic stroke.

The first high quality RCT (Doesborgh et al., 2004b) randomized patients to receive a multicue computer training program or no treatment. Verbal communication was measured by the Amsterdam Nijmegen Everyday Language Test – Scale A at post-treatment (2 months). No significant between group difference was found.

The second high quality cross-over design RCT (Nobis-Bosch et al., 2011) randomized patients to receive intensive language training using the B.A.Bar electronic learning device or nonlinguistic cognitive training for 4 weeks, before crossing over to receive the other intervention for a further 4 weeks. Verbal communication was measured by the Amsterdam Nijmegen Everyday Language Test at post-treatment (4 weeks, 8 weeks) and follow-up (3 months). No significant between-group difference was found at any time point.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that technology-assisted training is not more effective than comparison interventions (no treatment, nonlinguistic cognitive training) in improving verbal communication in patients with chronic stroke.

Verbal fluencyNot effective1b

One high quality RCT (Nobis-Bosch et al., 2011) investigated the effect of technology-assisted training on verbal fluency in patients with chronic stroke. This high quality RCT

randomized patients to receive intensive language training using the B.A.Bar electronic learning device or nonlinguistic cognitive training for 4 weeks, before crossing over to receive the other intervention for a further 4 weeks. Verbal fluency was measured by the Word Fluency Test (Food, Animals) at post-treatment (4 weeks, 8 weeks) and follow-up (3 months). No significant between-group difference was found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that intensive language training using the B.A.Bar electronic learning device is not more effective than a comparison intervention (nonlinguistic cognitive training) in improving verbal fluency in patients with chronic stroke.

Phase not specific to one period - Cognitive behavior language therapy

CommunicationEffective1b

One high quality RCT (Akabogu et al., 2019) investigated the effect of cognitive behavior language therapy (CBLT) on communication in patients with stroke. This high quality RCT randomized patients (stage of stroke recovery not specified) to receive CBLT or no treatment. Communication skills were measured by the Porch Index of Communicative Ability at post-treatment (10 weeks) and follow-up (3 months). Significant between-group differences were found at both time points, favoring CBLT vs. no treatment.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that CBLT is more effective than no treatment in improving communication skills in patients with stroke.

Unhelpful thoughts and beliefsEffective1b

One high quality RCT (Akabogu et al., 2019) investigated the effect of cognitive behavior language therapy (CBLT) on unhelpful thoughts and beliefs in patients with stroke. This high quality RCT randomized patients (stage of stroke recovery not specified) to receive CBLT or no treatment. Speech-language unhelpful thoughts and beliefs were measured by Speech-Language Unhelpful Thoughts and Beliefs Scale at post-treatment (10 weeks) and follow-up (3 months). Significant between-group differences were found at both time points, favoring CBLT vs. no treatment.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that CBLT is more effective than no treatment in reducing unhelpful thoughts and beliefs in patients with stroke.

Phase not specific to one period - Cognitive-linguistic training

Communication (understandabilityNot effective1b

One high quality RCT (de Jong-Hagelstein et al., 2011) investigated the effect of cognitive-linguistic training on communication (understandability) in patients with acute/subacute stroke. This high quality RCT randomized patients to receive cognitive-linguistic training or communicative treatment (compensatory strategies and use of residual language skills). Communication (understandability) was measured by the Amsterdam-Nijmegen Everyday Language Test Scale A: Understandability (ANELT-A: Final score, Mean improvement, Severity category) at mid-treatment (3 months) and post-treatment (6 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that cognitive-linguistic training is not more effective than a comparison intervention (communicative treatment) in improving communication (understandability) in patients with stroke.

FluencyEffective1b

One high quality RCT (de Jong-Hagelstein et al., 2011) investigated the effect of cognitive-linguistic training on fluency in patients with acute/subacute stroke. This high quality RCT randomized patients to receive cognitive-linguistic training or communicative treatment (compensatory strategies and use of residual language skills). Fluency was measured by the Letter Fluency Task (LFT), Semantic Association Test (SAT), Semantic Word Fluency (SWF) at mid-treatment (3 months) and post-treatment (6 months). A significant between-group difference was found in one measure at mid-treatment (SWF) and in one measure (LFT) at post-treatment, favoring cognitive-linguistic training vs. communicative treatment.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that cognitive-linguistic training is more effective than a comparison intervention (communicative treatment) in improving fluency in patients with stroke.

Language processingNot effective1b

One high quality RCT (de Jong-Hagelstein et al., 2011) investigated the effect of cognitive-linguistic training on language processing in patients with acute/subacute stroke. This high quality RCT randomized patients to receive cognitive-linguistic training or communicative treatment (compensatory strategies and use of residual language skills). Language processing skills were measured by the Psycholinguistic Assessment of Language Processing in Aphasia (PALPA:  Semantic association with low imageability words, Nonword repetition, Auditory lexical decision) at mid-treatment (3 months) and post-treatment (6 months). mid-treatment (3 months) and post-treatment (6 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that cognitive-linguistic training is not more effective than a comparison intervention (communicative treatment) in improving language processing skills in patients with stroke.

Phase not specific to one period - Narrative aphasia intervention

Discourse abilitiesNot effective1b

One high quality RCT (Whitworth et al., 2014) investigated the effect of narrative aphasia intervention on discourse abilities in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive Novel Approach to Real-life communication – Narrative Intervention in Aphasia (NARNIA) or usual care. Discourse abilities were measured at (i) word-level by the Pyramid and Palmtrees Test, Kissing and Dancing Test, the Object and Action Naming Battery (Noun retrieval, Verb retrieval), and the Northwestern Assessment of Verbs and Sentences (NAVS – Verb comprehension, Verb naming); (ii) sentence-level by the NAVS (Sentence Comprehension Test, Argument Structure Production Test) and the Sentence Generation Test; and (iii) discourse level by the Curtin University Discourse Protocol –  Everyday Discourse (Overall Input: number of utterances; Single Word Level: heavy verbs, light verbs, mental verbs; Sentence Level: two arguments, three arguments, thematic; Discourse: orientation, body, conclusion) at post-treatment (5 weeks). A significant between-group differences was found in only one measure (Everyday Discourse -Discourse: orientation), favoring NARNIA vs. usual care.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that narrative aphasia intervention is not more effective than a comparison intervention (usual care) in improving discourse abilities in patients with subacute/chronic stroke.

Phase not specific to one period - Speech language therapy

Abstract reasoningEffective2a

One fair quality RCT (Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on abstract reasoning in patients with stroke. This fair quality cross-over design RCT randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Abstract reasoning was measured by the Raven’s Progressive Matrices at post-treatment (4 weeks). A significant between-group difference was found, favoring SLT vs. attention placebo. There were no significant differences between SLT and operant conditioning.
Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that speech language therapy is more effective than a comparison intervention (attention placebo treatment) in improving abstract reasoning in patients with stroke.
Note: SLT was not more effective than operant conditioning.

AphasiaNot effective2a

One fair quality RCT (Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on aphasia in patients with stroke. This fair quality cross-over design RCT randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Aphasia was measured by the Token Test – short version at post-treatment (4 weeks). No significant between-group differences were found.
Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that speech language therapy is not more effective than comparison interventions (attention placebo treatment, operant conditioning) in improving aphasia in patients with stroke.

CommunicationNot effective2a

Two fair quality RCTs (David et al., 1982; Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on communication in patients with stroke.

The first fair quality RCT (David et al., 1982) randomized patients with subacute/chronic stroke to receive SLT or language stimulation by untrained volunteers. Communication skills were measured by the Functional Communication Profile at different treatment intervals (1, 2, 3, 4 weeks of treatment) and at post-treatment (15-20 weeks). No significant between-group difference was found at any time point.

The second fair quality cross-over design RCT (Lincoln et al., 1982) randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Communication skills were measured by the Porch Index of Communicative Ability at post-treatment (4 weeks). No significant between-group differences were found.

Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from two fair quality RCTs that speech language therapy is not more effective than comparison interventions (stimulation and support by untrained volunteers, operant conditioning, non-specific attention placebo treatment) in improving communication skills in patients with stroke.

FluencyNot effective2a

One fair quality RCT (Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on fluency in patients with stroke. This fair quality cross-over design RCT randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Fluency was measured by the Fluency (Food/Countries) and Picture Description tasks at post-treatment (4 weeks). No significant between-group differences were found.

Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that speech language therapy is not more effective than comparison interventions (attention placebo treatment, operant conditioning) in improving fluency in patients with stroke.

Functional speechNot effective2a

One fair quality RCT (Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on functional speech in patients with stroke. This fair quality cross-over design RCT randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Functional Speech was measured by the Speech Questionnaire at post-treatment (4 weeks). A significant between-group difference in change scores was found, favoring attention placebo vs. SLT. There were no significant differences between SLT and operant conditioning.
Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that speech language therapy is not more effective than a comparison intervention (attention placebo treatment, operant conditioning) in improving functional speech in patients with stroke.

NamingNot effective2a

One fair quality RCT (Lincoln et al., 1982) investigated the effect of speech language therapy (SLT) on naming in patients with stroke. This fair quality cross-over design RCT randomized patients with subacute/chronic stroke to receive (i) SLT or (ii) operant training or attention placebo for 4 weeks; participants then crossed over to receive the other intervention for a further 4 weeks (see group assignment below). Naming skills were measured by the Object Naming Test at post-treatment (4 weeks). No significant between-group differences were found.
Note: Participants were assigned to 1 of 4 groups – Group A (SLT then attention placebo), Group B (attention placebo then SLT), Group C (SLT then operant conditioning), Group D (operant conditioning then SLT).

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that speech language therapy is not more effective than comparison interventions (attention placebo treatment, operant conditioning) in improving naming skills in patients with stroke.

Phase not specific to one period - Technology-assisted training

AphasiaNot effective1b

One high quality RCT (Kesav et al., 2017) investigated the effect of technology-assisted training on aphasia in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive computer-based language rehabilitation therapy or no additional treatment; both groups received conventional speech language therapy. Aphasia was measured by the Western Aphasia Battery – Aphasia Quotient at post-treatment (4 weeks) and follow-up (3 months). A significant between-group difference was found at both time points, favoring no additional treatment vs. computer-based language rehabilitation therapy.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that technology-assisted training is not more effective than a comparison intervention (conventional speech language therapy alone) in improving aphasia  in patients with stroke.
Note: The high quality RCT found that computer-based language rehabilitation therapy + conventional speech language therapy was less effective than speech language therapy alone.


Reference list:

Akabogu, J., Nnamani, A., Otu, M. S., Ukoha, E., Uloh-Bethels, A. C., Obiezu, M. N., … & Dike, A. E. (2019). Efficacy of cognitive behavior language therapy for aphasia following stroke: Implications for language education research. Medicine98(18).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504271/

Altmann, L. J., Hazamy, A. A., Carvajal, P. J., Benjamin, M., Rosenbek, J. C., & Crosson, B. (2014). Delayed stimulus-specific improvements in discourse following anomia treatment using an intentional gesture. Journal of Speech, Language, and Hearing Research57(2), 439-454.
https://jslhr.pubs.asha.org/article.aspx?articleid=1802601

Benjamin, M. L., Towler, S., Garcia, A., Park, H., Sudhyadhom, A., Harnish, S., … & Gonzalez Rothi, L. J. (2014). A behavioral manipulation engages right frontal cortex during aphasia therapy. Neurorehabilitation and Neural Repair28(6), 545-553.
https://journals.sagepub.com/doi/abs/10.1177/1545968313517754

Bowen, A., Hesketh, A., Patchick, E., Young, A., Davies, L., Vail, A., … & Ralph, M. A. L. (2012). Effectiveness of enhanced communication therapy in the first four months after stroke for aphasia and dysarthria: a randomised controlled trial. BMJ345, e4407.
https://www.bmj.com/content/345/bmj.e4407.full

Breitenstein, C., Grewe, T., Flöel, A., Ziegler, W., Springer, L., Martus, P., … & Abel, S. (2017). Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomised, open-label, blinded-endpoint, controlled trial in a health-care setting. The Lancet389(10078), 1528-1538.
https://www.sciencedirect.com/science/article/pii/S0140673617300673

Ciccone, N., West, D., Cream, A., Cartwright, J., Rai, T., Granger, A., … & Godecke, E. (2016). Constraint-induced aphasia therapy (CIAT): a randomised controlled trial in very early stroke rehabilitation. Aphasiology30(5), 566-584.
https://www.tandfonline.com/doi/abs/10.1080/02687038.2015.1071480

David, R., Enderby, P., & Bainton, D. (1982). Treatment of acquired aphasia: speech therapists and volunteers compared. Journal of Neurology, Neurosurgery & Psychiatry, 45(11), 957-961.
https://jnnp.bmj.com/content/45/11/957.short

De Jong-Hagelstein, M., Van de Sandt-Koenderman, W. M. E., Prins, N. D., Dippel, D. W. J., Koudstaal, P. J., & Visch-Brink, E. G. (2011). Efficacy of early cognitive–linguistic treatment and communicative treatment in aphasia after stroke: a randomised controlled trial (RATS-2). Journal of Neurology, Neurosurgery & Psychiatry82(4), 399-404.
https://jnnp.bmj.com/content/82/4/399.short

Doesborgh, S., van de Sandt‐Koenderman, M., Dippel, D., van Harskamp, F., Koudstaal, P., & Visch‐Brink, E. (2004). Cues on request: The efficacy of Multicue, a computer program for wordfinding therapy. Aphasiology18(3), 213-222.
https://www.tandfonline.com/doi/abs/10.1080/02687030344000580

Doesborgh, S. J., van de Sandt-Koenderman, M. W., Dippel, D. W., van Harskamp, F., Koudstaal, P. J., & Visch-Brink, E. G. (2004). Effects of semantic treatment on verbal communication and linguistic processing in aphasia after stroke: a randomized controlled trial. Stroke35(1), 141-146.
https://s3.amazonaws.com/academia.edu.documents/39852601/Effects_of_Semantic_Treatment_on_Verbal_20151109-15374-17fjs7s.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543423624&Signature=lDkTEhwBwpanKGAm4BMr1VxETWY%3D&response-content-disposition=inline%3B%20filename%3DEffects_of_Semantic_Treatment_on_Verbal.pdf

Drummond, S. S., & Rentschler, G. J. (1981). The efficacy of gestural cueing in dysphasic word-retrieval responses.
https://deepblue.lib.umich.edu/handle/2027.42/24335

Elman, R. J., & Bernstein-Ellis, E. (1999). The efficacy of group communication treatment in adults with chronic aphasia. Journal of Speech, Language, and Hearing Research42(2), 411-419.
https://jslhr.pubs.asha.org/article.aspx?articleid=1780893

Godecke, E., Ciccone, N. A., Granger, A. S., Rai, T., West, D., Cream, A., … & Hankey, G. J. (2014). A comparison of aphasia therapy outcomes before and after a Very Early Rehabilitation programme following stroke. International Journal of Language & Communication Disorders49(2), 149-161.
https://onlinelibrary.wiley.com/doi/abs/10.1111/1460-6984.12074

Hartman, J., & Landau, W. M. (1987). Comparison of formal language therapy with supportive counseling for aphasia due to acute vascular accident. Archives of Neurology44(6), 646-649.
https://jamanetwork.com/journals/jamaneurology/article-abstract/586522

Kagan, A., Black, S. E., Duchan, J. F., Simmons-Mackie, N., & Square, P. (2001). Training volunteers as conversation partners using Supported Conversation for Adults with Aphasia (SCA): A controlled trial. Journal of Speech, Language, and Hearing Research44(3), 624-638.
https://jslhr.pubs.asha.org/article.aspx?articleid=1780646&resultclick=1

Katz, R. C., & Wertz, R. T. (1992). Computerized hierarchical reading treatment in aphasia. Aphasiology6(2), 165-177.
https://www.tandfonline.com/doi/abs/10.1080/02687039208248588

Katz, R. C., & Wertz, R. T. (1997). The efficacy of computer-provided reading treatment for chronic aphasic adults. Journal of Speech, Language, and Hearing Research40(3), 493-507.
https://jslhr.pubs.asha.org/article.aspx?articleid=1781835

Kesav, P., Vrinda, S. L., Sukumaran, S., Sarma, P. S., & Sylaja, P. N. (2017). Effectiveness of speech language therapy either alone or with add-on computer-based language therapy software (Malayalam version) for early post stroke aphasia: A feasibility study. Journal of the Neurological Sciences380, 137-141.
https://www.sciencedirect.com/science/article/pii/S0022510X17304446

Kurland, J., Stanek, E. J., Stokes, P., Li, M., & Andrianopoulos, M. (2016). Intensive language action therapy in chronic aphasia: A randomized clinical trial examining guidance by constraint. American Journal of Speech-Language Pathology25(4S), S798-S812.
https://ajslp.pubs.asha.org/article.aspx?articleid=2594846

Laska, A. C., Kahan, T., Hellblom, A., Murray, V., & Von Arbin, M. (2011). A randomized controlled trial on very early speech and language therapy in acute stroke patients with aphasia. Cerebrovascular Diseases Extra1(1), 66-74.
https://www.karger.com/Article/Abstract/329835

Lincoln, N. B., Mulley, G. P., Jones, A. C., McGuirk, E., Lendrem, W., & Mitchell, J. R. A. (1984). Effectiveness of speech therapy for aphasic stroke patients: a randomised controlled trial. The Lancet323(8388), 1197-1200.
https://www.sciencedirect.com/science/article/pii/S0140673684916908

Lincoln, N. B., Pickersgill, M. J., Hankey, A. I., & Hilton, C. R. (1982). An evaluation of operant training and speech therapy in the language rehabilitation of moderate aphasics. Behavioural and Cognitive Psychotherapy10(2), 162-178.
https://www.cambridge.org/core/journals/behavioural-and-cognitive-psychotherapy/article/an-evaluation-of-operant-training-and-speech-therapy-in-the-language-rehabilitation-of-moderate-aphasics/7DA3E51E241D9179DF811C29F0B429A2

Lyon, J. G., Cariski, D., Keisler, L., Rosenbek, J., Levine, R., Kumpula, J., … & Blanc, M. (1997). Communication partners: Enhancing participation in life and communication for adults with aphasia in natural settings. Aphasiology11(7), 693-708.
https://www.tandfonline.com/doi/abs/10.1080/02687039708249416

Maher, L. M., Kendall, D., Swearengin, J. A., Rodriguez, A., Leon, S. A., Pingel, K., … & Rothi, L. J. G. (2006). A pilot study of use-dependent learning in the context of constraint induced language therapy. Journal of the International Neuropsychological Society12(6), 843-852.
https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/pilot-study-of-usedependent-learning-in-the-context-of-constraint-induced-language-therapy/110C1935DAB1797CA4D766AB1CDCA392

Mattioli, F., Ambrosi, C., Mascaro, L., Scarpazza, C., Pasquali, P., Frugoni, M., … & Gasparotti, R. (2014). Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study. Stroke45(2), 545-552.
https://www.ahajournals.org/doi/abs/10.1161/strokeaha.113.003192

Nenert, R., Allendorfer, J. B., Martin, A. M., Banks, C., Ball, A., Vannest, J., … & Szaflarski, J. P. (2017). Neuroimaging Correlates of Post-Stroke Aphasia Rehabilitation in a Pilot Randomized Trial of Constraint-Induced Aphasia Therapy. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research23, 3489.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529460/

Nobis-Bosch, R., Springer, L., Radermacher, I., & Huber, W. (2011). Supervised home training of dialogue skills in chronic aphasia: A randomized parallel group study. Journal of Speech, Language, and Hearing Research54(4), 1118-1136.
https://jslhr.pubs.asha.org/article.aspx?articleid=1781985&resultclick=1

Palmer, R., Enderby, P., Cooper, C., Latimer, N., Julious, S., Paterson, G., … & Delaney, A. (2012). Computer therapy compared with usual care for people with long-standing aphasia poststroke: a pilot randomized controlled trial. Stroke43(7), 1904-1911.
https://s3.amazonaws.com/academia.edu.documents/42764092/Computer_Therapy_Compared_With_Usual_Car20160217-998-k05to0.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543425130&Signature=KqdD%2B0ebRPwt2%2BsIp7I%2BnYLSmsU%3D&response-content-disposition=inline%3B%20filename%3DComputer_therapy_compared_with_usual_car.pdf

Stahl, B., Mohr, B., Dreyer, F. R., Lucchese, G., & Pulvermüller, F. (2016). Using language for social interaction: communication mechanisms promote recovery from chronic non-fluent aphasia. Cortex85, 90-99.
https://www.sciencedirect.com/science/article/pii/S0010945216302684

Szaflarski, J. P., Ball, A. L., Vannest, J., Dietz, A. R., Allendorfer, J. B., Martin, A. N., … & Lindsell, C. J. (2015). Constraint-induced aphasia therapy for treatment of chronic post-stroke aphasia: a randomized, blinded, controlled pilot trial. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research21, 2861.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588672/

Sickert, A., Anders, L. C., Münte, T. F., & Sailer, M. (2014). Constraint-induced aphasia therapy following sub-acute stroke: a single-blind, randomised clinical trial of a modified therapy schedule. J Neurol Neurosurg Psychiatry85(1), 51-55.
https://jnnp.bmj.com/content/85/1/51.short

Thompson, C. K., Choy, J. J., Holland, A., & Cole, R. (2010). Sentactics®: Computer-automated treatment of underlying forms. Aphasiology24(10), 1242-1266.
https://www.tandfonline.com/doi/abs/10.1080/02687030903474255

Whitworth, A., Leitao, S., Cartwright, J., Webster, J., Hankey, G. J., Zach, J., … & Wolz, V. (2015). NARNIA: A new twist to an old tale. A pilot RCT to evaluate a multilevel approach to improving discourse in aphasia. Aphasiology29(11), 1345-1382.
https://www.tandfonline.com/doi/abs/10.1080/02687038.2015.1081143

Woldag, H., Voigt, N., Bley, M., & Hummelsheim, H. (2017). Constraint-induced aphasia therapy in the acute stage: What is the key factor for efficacy? A randomized controlled study. Neurorehabilitation and Neural Repair31(1), 72-80.
https://journals.sagepub.com/doi/abs/10.1177/1545968316662707


Excluded Studies:

Bonifazi, S., Tomaiuolo, F., Altoè, G., Ceravolo, M. G., Provinciali, L., & Marangolo, P. (2013). Action observation as a useful approach for enhancing recovery of verb production: new evidence from aphasia. Eur. J. Phys. Rehabil. Med49, 473-481.
Reason for exclusion: not a RCT.

Brady, M. C., Kelly, H., Godwin, J., & Enderby, P. (2012). Speech and language therapy for aphasia following stroke. Cochrane database of systematic reviews, (5).
Reason for exclusion: review; all references of this review were verified for inclusion/exclusion in the present module.

Cherney, L. R. (2010). Oral reading for language in aphasia (ORLA): Evaluating the efficacy of computer-delivered therapy in chronic nonfluent aphasia. Topics in Stroke Rehabilitation17(6), 423-431.
Reason for exclusion: both groups received therapy; mode of delivery differed (computer vs. therapist).

Crerar, M. A., Ellis, A. W., & Dean, E. C. (1996). Remediation of sentence processing deficits in aphasia using a computer-based microworld. Brain and Language52(1), 229-275.
Reason for exclusion: both groups received therapy, no control group.

Des Roches, C. A., & Kiran, S. (2017). Technology-based rehabilitation to improve communication after acquired brain injury. Frontiers in neuroscience11, 382.
Reason for exclusion: review; all references of this review were verified for inclusion/exclusion in the present module.

Dignam, J., Copland, D., McKinnon, E., Burfein, P., O’brien, K., Farrell, A., & Rodriguez, A. D. (2015). Intensive versus distributed aphasia therapy: a nonrandomized, parallel-group, dosage-controlled study. Stroke46(8), 2206-2211.
Reason for exclusion: both groups received therapy, only intensity varied.

Ferguson, N. F., Evans, K., & Raymer, A. M. (2012). A comparison of intention and pantomime gesture treatment for noun retrieval in people with aphasia. American Journal of Speech-Language Pathology21(2), S126-S139.
Reason for exclusion: not a RCT.

Hinckley, J. J., Patterson, J. P., & Carr, T. H. (2001). Differential effects of context-and skill-based treatment approaches: Preliminary findings. Aphasiology15(5), 463-476.
Reason for exclusion: all groups received therapy; no control group.

Humphreys, I., Thomas, S., Phillips, C., & Lincoln, N. (2015). Cost analysis of the Communication and Low Mood (CALM) randomised trial of behavioural therapy for stroke patients with aphasia. Clinical rehabilitation29(1), 30-41.
Reason for exclusion: cost-effectiveness report, no outcome of interest.

Godecke, E., Hird, K., Lalor, E. E., Rai, T., & Phillips, M. R. (2012). Very early poststroke aphasia therapy: a pilot randomized controlled efficacy trial. International Journal of Stroke7(8), 635-644.
Reason for exclusion: both groups received therapy, only intensity differed.

Godecke, E., Armstrong, E. A., Rai, T., Middleton, S., Ciccone, N., Whitworth, A., … & Cadilhac, D. A. (2016). A randomized controlled trial of very early rehabilitation in speech after stroke.
Reason for exclusion: study protocol.

Latimer, N. R., Dixon, S., & Palmer, R. (2013). Cost-utility of self-managed computer therapy for people with aphasia. International journal of technology assessment in health care29(4), 402-409.
Reason for exclusion: cost-analysis report, no outcome of interest.

  1. (2013). UK: British Aphasiology Society, 2007: 67–8.∗ Martins IP, Leal G, Fonseca I, Farrajota L, Aguiar M, Fonseca J, et al. A randomized, rater-blinded, parallel trial of intensive speech therapy in sub-acute post-stroke aphasia: the SP-IR-IT study. International Journal of Language and Communication Disorders48(4), 421-31.
    Reason for exclusion: both groups received therapy, only intensity varied.

Rochon, E., Laird, L., Bose, A., & Scofield, J. (2005). Mapping therapy for sentence production impairments in nonfluent aphasia. Neuropsychological Rehabilitation15(1), 1-36.
Reason for exclusion: not a RCT (n=5 patients).

Thomas, S. A., Walker, M. F., Macniven, J. A., Haworth, H., & Lincoln, N. B. (2013). Communication and Low Mood (CALM): a randomized controlled trial of behavioural therapy for stroke patients with aphasia. Clinical rehabilitation27(5), 398-408.
Reason for exclusion: study included in the Depression module.

Szelag, E., Lewandowska, M., Wolak, T., Seniow, J., Poniatowska, R., Pöppel, E., & Szymaszek, A. (2014). Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study. Journal of the neurological sciences338(1-2), 77-86.
Reason for exclusion: both groups received computerized training; no control group.

Smith, D. S., Goldenberg, E., Ashburn, A. E., Kinsella, G., Sheikh, K., Brennan, P. J., … & Reeback, J. S. (1981). Remedial therapy after stroke: a randomised controlled trial. Br Med J (Clin Res Ed)282(6263), 517-520.
Reason for exclusion: no outcome of interest.

Van der Meulen, I., van de Sandt-Koenderman, W. M. E., Heijenbrok-Kal, M. H., Visch-Brink, E. G., & Ribbers, G. M. (2014). The efficacy and timing of melodic intonation therapy in subacute aphasia. Neurorehabilitation and neural repair28(6), 536-544.
Reason for exclusion: study included in the “Music Therapy” module.

Varley, R., Cowell, P. E., Dyson, L., Inglis, L., Roper, A., & Whiteside, S. P. (2016). Self-administered computer therapy for apraxia of speech: two-period randomized control trial with crossover. Stroke47(3), 822-828.
Reason for exclusion: the intervention was designed for apraxia of speech and not aphasia.

Wan, C. Y., Zheng, X., Marchina, S., Norton, A., & Schlaug, G. (2014). Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca’s aphasia. Brain and language136, 1-7.
Reason for exclusion: study included in the “Music Therapy” module.

Wenke, R., Lawrie, M., Hobson, T., Comben, W., Romano, M., Ward, E., & Cardell, E. (2014). Feasibility and cost analysis of implementing high intensity aphasia clinics within a sub-acute setting. International journal of speech-language pathology16(3), 250-259.
Reason for exclusion: not a RCT.

Wilssens, I., Vandenborre, D., van Dun, K., Verhoeven, J., Visch-Brink, E., & Mariën, P. (2015). Constraint-induced aphasia therapy versus intensive semantic treatment in fluent aphasia. American Journal of Speech-Language Pathology24(2), 281-294.
Reason for exclusion: both groups received therapy.

Whiteside, S. P., Inglis, A. L., Dyson, L., Roper, A., Harbottle, A., Ryder, J., … & Varley, R. A. (2012). Error reduction therapy in reducing struggle and group behaviours in apraxia of speech. Neuropsychological Rehabilitation22(2), 267-294.
Reason for exclusion: the intervention was designed for apraxia of speech and not aphasia.

Woolf, C., Caute, A., Haigh, Z., Galliers, J., Wilson, S., Kessie, A., … & Marshall, J. (2016). A comparison of remote therapy, face to face therapy and an attention control intervention for people with aphasia: a quasi-randomised controlled feasibility study. Clinical Rehabilitation30(4), 359-373.
Reason for exclusion: both groups received therapy; mode of delivery was different.

Zhang, J., Yu, J., Bao, Y., Xie, Q., Xu, Y., Zhang, J., & Wang, P. (2017). Constraint-induced aphasia therapy in post-stroke aphasia rehabilitation: A systematic review and meta-analysis of randomized controlled trials. PloS one12(8), e0183349.
Reason for exclusion: review; all references of this review were verified for inclusion/exclusion in the present module.