Executive Function

Note: When reviewing the findings, it is important to note that they are always made according to randomized clinical trial (RCT) criteria – specifically as compared to a control group. To clarify, if a treatment is “effective” it implies that it is more effective than the control treatment to which it was compared. Non-randomized studies are no longer included when there is sufficient research to indicate strong evidence (level 1a) for an outcome.

A systematic literature review on the effectiveness of EF interventions post-stroke was conducted in January 2011 (please see the paper from Poulin, V., Korner-Bitensky, N., Dawson, D., & Bherer, L. (2012). Efficacy of executive function interventions after stroke: a systematic review.Topics in Stroke Rehabilitation, 19(2), 158-171) and was updated in February 2013 and August 2017 for the purpose of this module.

Currently, 15 RCTs that meet the inclusion criteria are included in the module. Six of them are high quality studies, eight are fair quality RCTs and one is a low quality RCT.

In patients with acute stroke, EF intervention included computer interventions. Computer interventions were found to be more effective than comparison treatments in improving outcomes such as overall cognitive functions, selective attention, processing speed and complex attention, and working memory; but not outcomes related to frontal lobe function, functional independence, reasoning, verbal fluency/language and visuo-constructive abilities.

In patients with chronic stroke, EF interventions included computer interventions, paging system, strategy training and virtual reality. Computer interventions were found to be more effective than comparison treatments in improving attention, self-perceived health and memory; but not cognitive function, reasoning, occupational performance, processing speed and complex attention, and quality of life. Paging system was found to be more effective than comparison treatments in improving task completion. Strategy training was found to be more effective than comparison interventions in improving concept formation and cognitive flexibility; but not instrumental activities of daily living. Virtual reality was found to be more effective than comparison interventions in improving attention, cognitive function, verbal fluency/language; but not memory, processing speed and complex attention, reasoning, stroke outcomes, and visuospatial skills.

In patients with stage of stroke recovery not specific to one period, EF interventions included the CO-OP approach, computer interventions, strategy training, time pressure management, and virtual reality. The CO-OP approach was found to be more effective than comparison interventions in improving stroke outcomes; but not outcomes related to dysexecutive deficits, cognitive flexibility, life habits, occupational performance, processing speed and complex attention and working memory. Computer interventions were found to be more effective than comparison interventions in improving unilateral spatial neglect, frontal lobe function, processing speed and complex attention; but not mood, cognitive function, dysexecutive deficits, cognitive flexibility, life habits, occupational performance, and working memory. Strategy training was found to be more effective than comparison interventions in improving mood, cognitive flexibility and functional independence; but not inhibition. Time pressure management was found to be more effective than comparison interventions in improving information intake and speed of information processing; but not cognitive function, inhibition, attention, fatigue, functional independence, mood, processing speed and complex attention, quality of life and working memory. Virtual reality was found to be more effective than a comparison intervention in improving attention and working memory.

Please click here to see the Authors’ Results Table.

Acute phase - Computer interventions

Cognitive functionEffective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on cognitive function in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Cognitive function was measured by the Mini-Mental State Examination (MMSE) at post-treatment (4 weeks). Significant between-group differences were found, favoring computer executive function training vs. sham intervention.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is more effective than a comparison intervention (sham intervention) in improving cognitive function in patients with acute stroke.

Frontal lobe functionNot effective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on frontal lobe function in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Frontal lobe function was measured by the Frontal Assessment Battery at post-treatment (4 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is not more effective than a comparison intervention (sham intervention) in improving frontal lobe function in patients with acute stroke.

Functional independenceNot effective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on functional independence in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Functional independence was measured by the Functional Independence Measure at post-treatment (4 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is not more effective than a comparison intervention (sham intervention) in improving functional independence in patients with acute stroke.

Processing speed and complex attentionEffective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on processing speed and complex attention in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Processing speed and complex attention were measured by the Trail Making Test A&B at post-treatment (4 weeks). Significant between-group differences were found, favoring computer executive function training vs. sham intervention.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is more effective than a comparison intervention (sham intervention) in improving processing speed and complex attention in patients with acute stroke.

ReasoningNot effective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on reasoning in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or a sham intervention. Non-verbal reasoning was measured by the Progressive Matrices 47 at post-treatment (4 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is not more effective than a comparison intervention (sham intervention) in improving non-verbal reasoning in patients with acute stroke.

Selective attentionEffective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on visual selective attention in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Visual selective attention was measured by the Attentive Matrices at post-treatment (4 weeks). Significant between-group differences were found, favoring computer executive function training vs. sham intervention.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is more effective than a comparison intervention (sham intervention) in improving visual selective attention in patients with acute stroke.

Verbal fluency / languageNot effective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on verbal fluency in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Verbal fluency was measured by the Phonological Fluency and Semantic Fluency Tests at post-treatment (4 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is not more effective than a comparison intervention (sham intervention) in improving verbal fluency in patients with acute stroke.

Visual-constructive abilitiesNot effective1b

One high quality RCT (Zucchella et al., 2014) investigated the effect of a computer-based intervention on visual-constructive abilities in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Visual-constructive abilities were measured by the Rey-Osterrieth Figure Copy Test at post-treatment (4 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is not more effective than a comparison intervention (sham intervention) in improving visual-constructive abilities in patients with acute stroke.

Working memoryEffective1b

One high quality RCT (Zucchella et al., 2014) investigated the effects of a computer-based intervention on memory in patients with acute stroke. This high quality RCT randomized patients to receive therapist-guided computer executive function training or sham intervention. Measures of memory were taken at post-treatment (4 weeks) and included: (i) episodic memory, measured by the Rey Auditory Verbal Learning Test (RAVLT – immediate and delayed recall); (ii) verbal working memory, measured by the Digit Span Test; (iii) spatial memory, measured by Corsi’s Test; and (iv) logical memory, measured by the Logical Memory Test (immediate and delayed recall). At post-treatment there were significant between-group differences in episodic memory (RAVLT – delayed recall only) and logical memory (immediate and delayed), favoring computer executive function training vs. sham intervention. There were no significant differences in verbal memory or spatial memory.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer executive function training is more effective than a comparison intervention (sham intervention) in improving episodic and logical memory (but not verbal or spatial memory) in patients with acute stroke.

Chronic phase - Computer interventions

AttentionEffective2a

Two fair quality RCTs (Westerberg et al., 2007Lundqvist et al., 2010) investigated the effect of a computer intervention on attention in patients with chronic stroke.

The first fair quality RCT (Westerberg et al., 2007) randomized patients to receive home-based computer-assisted working memory training or no treatment. Attention was measured by the Stroop Interference Test and the Ruff 2&7 Test (selective attention), and the Paced Auditory Serial Attention Test (PASAT- Version A, sustained/divided attention) at post-treatment (5 weeks). There were significant between-group differences in one measure of selective attention (Ruff 2&7) and in measures of sustained/divided attention (PASAT – Version A) at post-treatment, in favour of computer-assisted working memory training vs. no training.

The second fair quality cross-over RCT (Lundqvist et al., 2010) randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Attention was measured by the PASAT, Listening Span Task and Picture Span Task at 4 weeks post-treatment (short-term follow-up) and at 20 weeks post-treatment (long-term follow-up). Between-group differences for attention were not reported.
Note: Combined results (i.e. at which time both groups received the intervention) showed significant improvement from baseline at both follow-up time points.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer-assisted working memory training is more effective than no treatment in improving attention in patients with chronic stroke. A second fair quality RCT also reported improvements following computer-assisted working memory training.

Cognitive flexibilityInsufficient evidence5

One fair quality RCT (Lundqvist et al., 2010) investigated the effect of a computer intervention on cognitive flexibility in patients with chronic stroke. This fair quality cross-over RCT randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Cognitive flexibility was measured by the Delis-Kaplan Executive Function System – Colour Word Interference Test Condition 4 – Inhibition/Switching at 4 weeks post-treatment (short-term follow-up) and 20 weeks post-treatment (at long-term follow-up). Between-group differences in cognitive flexibility were not reported.
Note: Combined results (i.e. at which time both groups received the intervention) showed significant improvement from baseline at both follow-up time points.

Conclusion: There is insufficient evidence (Level 5) regarding the effect of computer-assisted working memory training on cognitive flexibility in patients with chronic stroke. However, a fair quality RCT found significant improvement in cognitive flexibility following computer-assisted working memory training.

MemoryEffective2a

Three fair quality RCTs (Westerberg et al., 2007Lundqvist et al., 2010Lin et al., 2014) investigated the effect of computer interventions on memory in patients with chronic stroke.

The first fair quality RCT (Westerberg et al., 2007) randomized patients to receive home-based computer-assisted working memory training or no treatment. Memory outcomes included: (i) auditory working memory, measured by the Wechsler Adult Intelligence Scale – Revised NI (WAIS-R NI – Digit Span Test); (ii) delayed recall, measured by the Claeson-Dahl Word List Test – Delayed Recall; and (iii) visual-spatial working memory, measured by the WAIS-R NI – Span Board Test. Significant between-group differences in auditory working memory and visual-spatial working memory (WAIS-R NI – Digit Span Test, Span Board Test) were found at post-treatment, favoring computer-assisted working memory training vs. no treatment.

The second fair quality cross-over RCT (Lundqvist et al., 2010) randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Working memory was measured by the WAIS-R NI – Block-Span-Board (forwards, backwards) at 4 weeks post-treatment (short-term follow-up) and at 20 weeks post-treatment (long-term follow-up). Between-group differences for memory were not reported. Combined results (i.e. at which time both groups received the intervention) showed significant improvement from baseline to both follow-up time points.

The third fair quality RCT (Lin et al., 2014) randomized patients to receive computer-assisted memory/executive function training or no therapy. Working memory was measured by the Wechsler Memory Scale (WMS – information, orientation, mental control, logical memory, digits forward and backward, visual reproduction, associated learning, memory quotient) at post-treatment (10 weeks). Between-group differences in memory functions were not reported. There were significant within-group differences in memory functions (WMS – mental control, logical memory, digits forward and backward, visual reproduction, associated learning, memory quotient) from baseline to post-treatment in the computer-assisted memory/executive function training group, whereas significant gains were not seen in the group that received no training.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that home-based computer –assisted working memory training is more effective than no treatment in improving memory in patients with chronic stroke. Two other RCTs reported improvements following computer-assisted working memory training program.

Occupational performanceInsufficient evidence5

One fair quality RCT (Lundqvist et al., 2010) investigated the effect of a computer intervention on occupational performance in patients with chronic stroke. This fair quality cross-over RCT randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Occupational performance was measured by the Canadian Occupational Performance Measure (COPM – performance and satisfaction scales) at 20 weeks after training. Between-group differences for occupational performance were not reported.
Note: Combined results (i.e. at which time both groups received the intervention) showed significant improvement from baseline to follow-up.

Conclusion: There is insufficient evidence (Level 5) regarding the effect of computer-assisted working memory training on occupational performance in patients with chronic stroke. However, a fair quality RCT found significant improvement in occupational performance following computer-assisted working memory training.

Processing speed and complex attentionInsufficient evidence5

One fair quality RCT (Lin et al., 2014) investigated the effect of computer intervention on processing speed and complex attention in patients with chronic stroke. This fair quality RCT randomized patients to receive computer-assisted memory/executive function training or no computer training. Processing speed and complex attention were measured by the Trail Making Test A & B at baseline and post-treatment (10 weeks). Between-group differences in processing speed and complex attention were not reported; the group that received computer training demonstrated significant improvement on one measure of processing speed and complex attention (Trail Making Test A) from baseline to post-treatment.

Conclusion: There is insufficient evidence (Level 5) regarding the effect of computer-assisted memory and executive function training on processing speed and complex attention. However, a fair quality RCT found significant improvement in processing speed and complex attention following computer-assisted memory/executive function training.

Quality of lifeInsufficient evidence5

One fair quality RCT (Lundqvist et al., 2010) investigated the effect of a computer intervention on quality of life in patients with chronic stroke. This fair quality cross-over RCT randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Quality of life was measured by the EQ-5D at 20 weeks after training. Between-group differences for quality of life were not reported.
Note: Combined results (i.e. at which time both groups received the intervention) showed no significant improvement from baseline to follow-up.

Conclusion: There is insufficient evidence (Level 5) regarding the effect of computer-assisted working memory training on quality of life in patients with chronic stroke. Also, a fair quality RCT found no significant improvement in quality of life following computer-assisted working memory training.

ReasoningNot effective2a

One fair quality RCT (Westerberg et al., 2007) investigated the effect of computer interventions on reasoning in patients with chronic stroke. This fair quality RCT randomized patients to receive home-based computer-assisted working memory training or no treatment. Reasoning skills were measured by Raven’s Progressive Matrices at post-treatment (5 weeks). No significant between-group differences were found.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that a home-based computer-assisted working memory training is not more effective than no treatment in improving reasoning skills in patients with chronic stroke.

Self-perceived cognitive healthEffective2a

Two fair quality RCTs (Westerberg et al., 2007Lundqvist et al., 2010) investigated the effect of a computer intervention on self-perceived health in patients with chronic stroke.

The first fair quality RCT (Westerberg et al., 2007) randomized patients to receive home-based computer-assisted working memory training or no treatment. Self-perceptive health (self-rated cognitive failures) was measured by the Cognitive Failure Questionnaire at post-treatment (5 weeks). Significant between-group differences in cognitive failures were found, favoring computer-assisted working memory training vs. no treatment,

The second fair quality cross-over RCT (Lundqvist et al., 2010) randomized patients to receive a 5-week computer-assisted working memory training program or no therapy. Self-perceived health was measured by Visual Analogue Scale (VAS) at 20 weeks after training. Between-group differences in self-perceived health were not reported.
Note: Combined results (i.e. at which time both groups received the intervention) showed significant improvement from baseline to follow-up.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that home-based computer assisted working memory training is more effective than no treatment in improving self-perceived health in patients with chronic stroke. A second fair quality RCT also reported significant improvements in self-perceived health following computer-assisted working memory training.

Chronic phase - Paging system

Task completionEffective2a

One fair quality RCT (Fish et al., 2008) investigated the effect of electronic cueing using a paging system on task completion in patients with chronic stroke. This fair quality cross-over RCT randomized patients to receive pager training or delayed pager training (no training). Task completion was measured according to percentage of tasks successfully completed, taken at post-treatment (7 weeks) and at follow-up (7 weeks after pager withdrawal). Both groups demonstrated a significant between-group differences in task completion immediately following their respective intervention phase; results deteriorated to baseline levels following a period of non-use of the pagers.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that the electronic cueing using a paging system is more effective than a comparison intervention (no pager training) in improving task completion in patients with chronic stroke, in the short term.

Chronic phase - Strategy training

Cognitive flexibility (self-reported)Effective2a

One fair quality RCT (Man et al., 2006) investigated the effect of strategy training on cognitive flexibility in patients with chronic stroke. This fair quality RCT randomized patients to receive strategy training in the form of online (videoconference) training, self-directed computer-assisted training, face-to-face therapist-directed training or no training. Self-reported cognitive flexibility was measured by the Problem-solving Self-Efficacy Scale at baseline and at post-treatment (20 treatment sessions over 2 months). Significant between-group differences were found at post-treatment, favoring face-to-face therapist training vs. online (videoconferencing) training, and favoring face-to-face therapist training vs. self-directed computer-assisted training.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that strategy training in the form of face-to-face therapist training is more effective than comparison interventions (online interactive problem-solving training, computer-assisted problem-solving training) in improving self-reported cognitive flexibility in patients with chronic stroke.

Concept formation abilityNot effective2a

One fair quality RCT (Man et al., 2006) investigated the effect of strategy training on concept formation ability in patients with chronic stroke. This fair quality RCT randomized patients to receive strategy training in form of online (videoconferencing) training, self-directed computer-assisted training or face-to-face therapist-directed training, or no training. Concept formation ability was measured by the Category Test at baseline and at post-treatment (20 treatment sessions over 2 months). No significant differences were found between any groups.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that strategy training in the form of online interactive training, computer-assisted training or face-to-face therapist training is not more effective than no treatment in improving concept formation ability in patients with chronic stroke.

Instrumental activities of daily living (IADLs)Not effective2a

One fair quality RCT (Man et al., 2006) investigated the effect of strategy training on instrumental activities of daily living (IADLs) in patients with chronic stroke. This fair quality RCT randomized patients to receive strategy training in the form of online (videoconference) training, self-directed computer-assisted training or face-to-face therapist-directed training, or no training.  IADLs were measured by the Chinese Version of the Lawton Instrumental Activities of Daily Living Scale at baseline and at post-treatment (20 treatment sessions over 2 months). No significant differences were found between any groups.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that strategy training in the form of online interactive training, computer-assisted training or face-to-face therapist training is not more effective than no treatment in improving IADLs in patients with chronic stroke.

Chronic phase - Virtual reality

AttentionEffective1b

One high quality RCT (Faria et al., 2016) investigated the effect of virtual-reality (VR) -based rehabilitation on attention in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Attention was measured by the Addenbrooke Cognitive Examination (ACE – Attention) at post-treatment (4-6 weeks). Significant between-group differences in attention were found at post-treatment, favoring VR-based rehabilitation vs. conventional cognitive rehabilitation.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is more effective than a comparison intervention (conventional cognitive rehabilitation) in improving attention in patients with chronic stroke.

Cognitive functionEffective1b

One high quality RCT (Faria et al., 2016) investigated the effect of virtual-reality (VR) -based rehabilitation on cognitive function in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Cognitive function was measured by the Addenbrooke Cognitive Examination (ACE – total score) and the Mini-Mental State Examination (MMSE) at post-treatment (4-6 weeks). Significant between-group differences were found in both measures of cognitive function at post-treatment, favoring VR-based rehabilitation vs. conventional cognitive rehabilitation.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is more effective than a comparison intervention (conventional cognitive rehabilitation) in improving cognitive function in patients with chronic stroke.

MemoryNot effective1b

One high quality RCT (Faria et al., 2016) investigated the effect of virtual-reality (VR) -based rehabilitation on memory in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Memory was measured by the Addenbrooke Cognitive Examination (ACE – Memory) at post-treatment (4-6 weeks). No significant between-group differences in memory were found at post-treatment.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is not more effective than a comparison intervention (conventional cognitive rehabilitation) in improving memory in patients with chronic stroke.

Processing speed and complex attentionNot effective1b

One high quality RCT (Faria et al., 2016) investigated the effects of virtual-reality (VR) -based rehabilitation on processing speed and complex attention in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Processing speed and complex attention were measured by the Trail Making Test A & B at post-treatment (4-6 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is not more effective than a comparison intervention (conventional cognitive rehabilitation) in improving processing speed and complex attention in patients with chronic stroke.

ReasoningNot effective1b

One high quality RCT (Faria et al., 2016) investigated the effect of virtual-reality (VR) -based rehabilitation on reasoning in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Logical/sequential reasoning was measured by the WAIS III Picture Arrangement test at post-treatment (4-6 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is not more effective than a comparison intervention (conventional cognitive rehabilitation) in improving reasoning in patients with chronic stroke.

Stroke outcomesNot effective1b

One high quality RCT (Faria et al., 2016) investigated the effects of virtual-reality (VR) -based rehabilitation on stroke outcomes in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Stroke outcomes measured by the Stroke Impact Scale at post-treatment (4-6 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is not more effective than a comparison intervention (conventional cognitive rehabilitation) in improving stroke outcomes in patients with chronic stroke.

Verbal fluency / languageEffective1b

One high quality RCT (Faria et al., 2016) investigated the effects of virtual-reality (VR) -based rehabilitation on verbal fluency/language in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Verbal fluency/language was measured by the Addenbrooke Cognitive Examination (ACE – Fluency, Language) at post-treatment (4-6 weeks). At post-treatment there were significant between-group differences in ACE Fluency scores only, favoring VR-based rehabilitation vs. conventional cognitive rehabilitation.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is more effective than a comparison intervention (conventional cognitive rehabilitation) in improving verbal fluency in patients with chronic stroke.
Note:
There were no significant between-group differences in language scores.

Visuospatial skillsNot effective1b

One high quality RCT (Faria et al., 2016) investigated the effect of virtual-reality (VR)-based rehabilitation on visuospatial skills in patients with chronic stroke. This high quality RCT randomized patients to receive VR-based rehabilitation or conventional cognitive rehabilitation. Visuospatial skills were measured by the Addenbrooke Cognitive Examination (ACE –Visuospatial) at post-treatment (4-6 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that VR-based rehabilitation is not more effective than a comparison intervention (conventional cognitive rehabilitation) in improving visuospatial skills in patients with chronic stroke.

Phase not specific to one period - Cognitive Orientation to Daily Occupational Performance (CO-OP)

Cognitive flexibilityNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of the CO-OP treatment approach on cognitive flexibility in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Cognitive flexibility was measured by the Delis-Kaplan Executive Function System (D-KEFS) Colour-Word Interference Test at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that CO-OP training is not more effective than a comparison intervention (computer-assisted working memory training) in improving cognitive flexibility in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Dysexecutive deficitsNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of the CO-OP treatment approach on dysexecutive deficits in patients with stroke. The fair quality partial RCT randomized patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Dysexecutive deficits were measured by the Dysexecutive Questionnaire at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point. 

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that CO-OP training is not more effective than comparison interventions (computer-based memory training) in improving dysexecutive deficits in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Life habitsNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of the CO-OP treatment approach on life habits in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Life habits were measured by the Assessment of Life Habits at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that CO-OP training is not more effective than a comparison intervention (computer-assisted memory training) in improving life habits in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Occupational performanceNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of the CO-OP treatment approach on occupational performance in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Occupational performance was measured by the Canadian Occupational Performance Measure (COPM – performance and satisfaction scales for trained and untrained tasks/significant others’ ratings) and the Self-Efficacy Scale for Performing Life Activities Post-Stroke at post-treatment (8 weeks) and follow-up (1 month). No significant between-group differences were found at either time point.
Note: The CO-OP group demonstrated significant within-group differences on most COPM – performance and satisfaction scores (trained and untrained tasks), and on the Self-Efficacy Scale for Performing Life Activities Post-Stroke at both time points.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that CO-OP training is not more effective than a comparison intervention (computer-assisted memory training) in improving occupational performance in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Processing speed and complex attentionConflicting4

Two fair quality RCTs (Poulin et al., 2016Wolf et al., 2016) investigated the effect of the CO-OP treatment approach on processing speed and complex attention in patients with stroke.

The first fair quality partial RCT (Poulin et al., 2016) assigned patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Processing speed and complex attention were measured by the Trail Making Test A&B at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point. 

The second fair quality RCT (Wolf et al., 2016) randomized patients with acute/subacute stroke to receive the CO-OP treatment approach or conventional occupational therapy. Processing speed and complex attention was measured by the Delis-Kaplan Executive Function System Trail Making Test at baseline, at post-treatment (10 weeks) and at follow-up (3 months). Change scores from baseline to post-treatment and baseline to follow-up revealed medium effect sizes, favoring CO-OP vs. conventional occupational therapy.

Conclusion: There is conflicting evidence (Level 4) regarding the effect of the CO-OP approach on processing speed and complex attention in patients with stroke. One fair quality partial RCT found that an 8-week CO-OP training program was not more effective than computer-assisted working memory training, whereas a second fair quality RCT found that a 10-week CO-OP training program was more effective than conventional rehabilitation.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Stroke outcomesEffective2a

One fair quality RCT (Wolf et al., 2016) investigated the effect of cognitive rehabilitation using the CO-OP approach on stroke outcomes in patients with stroke. This fair quality RCT randomized patients with acute/subacute stroke to receive the CO-OP treatment approach or conventional occupational therapy. Stroke outcomes were measured by the Stroke Impact Scale (SIS – ADLs, Mobility, Hand Function, Strength, Recovery, Memory, Emotion, Communication, Physical) at post-treatment (10 sessions) and at follow-up (3 months). Change scores from baseline to post-treatment revealed medium to large effect sizes for most stroke outcomes (Recovery, ADLs, Hand Function, Strength, Communication, Memory, Emotion, Physical), favoring CO-OP vs. conventional occupational therapy. At follow-up, medium to large effect sizes were maintained in two stroke outcomes (Hand Function, Communication), favoring CO-OP vs. conventional occupational therapy.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that the CO-OP approach is more effective than a comparison intervention (conventional occupational therapy) in improving stroke outcomes in patients with stroke.

Working memoryNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of the CO-OP treatment approach on working memory in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive the CO-OP treatment approach or computer-assisted working memory training. Working memory was measured by the Wechsler Adult Intelligence Scale-IV (WAIS-IV) Digit Span test at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that CO-OP training is not more effective than a comparison intervention (computer-assisted memory training) in improving working memory in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the Computer interventions section below.

Phase not specific to one period - Computer interventions

Cognitive flexibilityNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of a computer intervention on cognitive flexibility in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or the CO-OP treatment approach. Cognitive flexibility was measured by the Delis-Kaplan Executive Function System (D-KEFS) Colour-Word Interference Test at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer-assisted working memory training is not more effective than a comparison intervention (CO-OP treatment approach) in improving cognitive flexibility in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

Cognitive functionNot effective1b

One high quality RCT (Prokopenko et al., 2013) and one fair quality RCT (Akerlund et al., 2013) investigated the effect of computer interventions on cognitive function in patients with stroke.

The high quality RCT (Prokopenko et al., 2013) randomized patients with acute/subacute stroke to receive computer-assisted attention and working memory training or conventional therapy. Cognitive function was measured by the Mini-Mental Status Examination (MMSE) and the Montreal Cognitive Assessment (MOCA) at post-treatment (2 weeks). No significant between-group differences were found on either measure of cognitive functions.

The fair quality RCT (Akerlund et al., 2013) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training with conventional rehabilitation or conventional rehabilitation alone. Cognitive function was measured by the Barrow Neurological Institute Screening for Higher Cerebral Functions at baseline, at post-treatment (1 week following a 5-week treatment), and at follow-up (18 weeks, 24 weeks). Significant between-group differences were found in changes of cognitive function scores from baseline to post-treatment, favoring computer-assisted working memory training with conventional rehabilitation vs. conventional rehabilitation alone. Results did not remain significant at either follow-up time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer-assisted attention and  working memory training is not more effective than a comparison intervention (conventional therapy) in improving cognitive function in patients with acute/subacute stroke. However, one fair quality RCT found that computer-assisted working memory training with conventional rehabilitation was more effective than conventional rehabilitation alone in improving cognitive function in patients with subacute/chronic stroke.
Note:
Differences in the type and duration of the intervention and outcome measures used may account for the discrepancy in results between studies.

Dysexecutive deficitsNot effective2a

Two fair quality RCTs (Akerlund et al., 2013; Poulin et al., 2016) investigated the effect of computer training on dysexecutive deficits in patients with stroke.

The first fair quality RCT (Akerlund et al., 2013) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training with conventional rehabilitation or conventional rehabilitation alone. Dysexecutive deficits were measured by the Dysexecutive Questionnaire at post-treatment (1 week following a 5-week treatment) and at follow-up (18 weeks, 24 weeks). No significant between-group differences in dysexecutive deficits were found at any time point.

The second fair quality partial RCT (Poulin et al., 2016) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or the CO-OP treatment approach. Dysexecutive deficits were measured by the Dysexecutive Questionnaire at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from two fair quality RCTs that computer-assisted memory training is not more effective than comparison interventions (conventional rehabilitation alone, CO-OP) in improving dysexecutive deficits in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

Frontal lobe functionEffective1b

One high quality RCT (Prokopenko et al., 2013) investigated the effect of a computer intervention on frontal lobe function in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive computer-assisted attention and working memory training or conventional therapy. Frontal lobe function was measured by the Frontal Assessment Battery at post-treatment (2 weeks). Significant between-group differences were found at post-treatment, favoring computer-assisted attention and working memory  training vs. conventional therapy.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer-assisted attention training is more effective than a comparison intervention (conventional therapy) in improving frontal lobe function in patients with stroke.

Life habitsNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of a computer intervention on life habits in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or the CO-OP treatment approach. Life habits were measured by the Assessment of Life Habits at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time points.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer-assisted working memory training is not more effective than a comparison intervention (CO-OP) in improving life habits in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

MoodNot effective1b

One high quality RCT (Prokopenko et al., 2013) and one fair quality RCT (Akerlund et al., 2013) investigated the effect of computer interventions on mood in patients with stroke.

The high quality RCT (Prokopenko et al., 2013) randomized patients with acute/subacute stroke to receive computer-assisted attention and working memory training or conventional therapy. Mood was measured by Hospital Anxiety and Depression Scale (HADS – Anxiety, Depression) at post-treatment (2 weeks). No significant between-group differences were found.

The fair quality RCT (Akerlund et al., 2013) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training with conventional rehabilitation or conventional rehabilitation alone. Anxiety and depression were measured by the HADS (Anxiety, Depression) at post-treatment (1 week following a 5-week treatment) and at follow-up (18 weeks, 24 weeks). There were no significant differences in anxiety at any time point or between intervention and control groups. There was a significant between-group difference in depression at post-treatment, favoring computer-assisted training group vs. conventional rehabilitation alone (Group C1, see below). Differences did not remain significant at either follow-up time point.
Note: The control group was subsequently offered computer training at the end of the study and results were analysed according to individuals who sought the intervention (Group C1) and those who refused the intervention (Group C2). Group C1 presented with significantly more depressive symptoms vs. Group C2 at baseline.

Conclusion: There is moderate evidence (Level 1b) from one high and one fair quality RCT that computer-assisted working memory training is not more effective than a comparison intervention (conventional rehabilitation alone) in improving mood in patients with stroke.

Occupational performanceNot effective2a

One fair quality RCT (Poulin et al., 2016) investigated the effect of a computer intervention on occupational performance in patients with stroke. This fair quality partial RCT randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or the CO-OP treatment approach. Occupational performance was measured by the Canadian Occupational Performance Measure (COPM – performance and satisfaction scales for trained and untrained tasks/significant others’ ratings) and the Self-Efficacy Scale for Performing Life Activities Post-Stroke) at post-treatment (8 weeks) and follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that computer-assisted working memory training is not more effective than a comparison intervention (CO-OP) in improving occupational performance in patients with stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

Processing speed and complex attentionEffective1b

One high quality RCT (Prokopenko et al., 2013) and one fair quality RCT (Poulin et al., 2016) investigated the effect of a computer intervention on processing speed and complex attention in patients with stroke.

The high quality RCT (Prokopenko et al., 2013) randomized patients with acute/subacute stroke to receive computer-assisted attention and working memory training or conventional therapy. Attention was measured by Shulte’s Table at post-treatment (2 weeks). Significant between-group differences in attention were found at post-treatment, favoring computer-assisted attention training vs. conventional therapy.

The fair quality partial RCT (Poulin et al., 2016) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or the CO-OP treatment approach. Processing speed and complex attention were measured by the Trail Making Test A&B at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that computer-assisted working memory training is more effective than a comparison intervention (conventional therapy) in improving processing speed and complex attention in patients with acute/subacute stroke. However, a fair quality RCT did not find any between-group differences on attention in patients witch acute/subacute stroke.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

Unilateral spatial neglectEffective1b

One high quality RCT (Prokopenko et al., 2013) investigated the effect of a computer intervention on unilateral spatial neglect (USN) in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive computer-assisted attention and working memory training or conventional therapy. USN was measured by the Clock Drawing Test at post-treatment (2 weeks). Significant between-group differences in USN were found at post-treatment, favoring computer-assisted attention training vs. conventional therapy.

Conclusion: There is moderate evidence (Level 1b) that computer-assisted attention training is more effective than a comparison intervention (conventional therapy) in improving USN in patients with acute/subacute stroke.

Working memoryNot effective2a

Two fair quality RCTs (Akerlund et al., 2013; Poulin et al., 2016) investigated the effect of computer interventions on working memory in patients with stroke.

The first fair quality  RCT (Akerlund et al., 2013) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training with conventional rehabilitation or conventional rehabilitation alone. Working memory was measured by the Wechsler Adult Intelligence Scale-III NI (Digit Span: forwards, reversed, scaled; Span Board: forwards, reversed, scaled; Working memory scaled score) at baseline, at post-treatment (1 week following a 5-week treatment) and at follow-up (18 weeks, 24 weeks). There were no significant between-group differences on any measure of working memory at post-treatment. At follow-up (18 weeks only) there were significant between-group differences in two measures of working memory (WAIS III NI – Digit Span forward, reversed change scores from baseline), favoring computer-assisted working memory training with conventional rehabilitation vs. conventional rehabilitation alone.

The second fair quality partial RCT (Poulin et al., 2016) randomized patients with subacute/chronic stroke to receive computer-assisted working memory training or CO-OP treatment approach. Working memory was measured by the WAIS-IV Digit Span test at post-treatment (8 weeks) and at follow-up (1 month). No significant between-group differences were found at either time point.

Conclusion: There is limited evidence (Level 2a) from two fair quality RCTs that computer-assisted working memory training is not more effective than comparison interventions (conventional rehabilitation alone, CO-OP treatment approach) in improving working memory in patients with stroke. However, one fair quality RCT found that working memory training did improve at follow-up only, in favour of computer-assisted working memory training with conventional rehabilitation vs. conventional rehabilitation alone.
Note: The study by Poulin et al. (2016) is also reviewed in the CO-OP section above.

Phase not specific to one period - Strategy training

Cognitive flexibilityEffective1b

One high quality RCT (Skidmore et al., 2015a) investigated the effect of strategy training using the Canadian Occupational Performance Measure (COPM) on cognitive flexibility in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive COPM strategy training or attention training for the duration of hospitalization (approx. 1-3 weeks). Cognitive flexibility was measured by the Delis-Kaplan Executive Functioning System (D-KEFS) Color Word Interference Test (cognitive flexibility scale) at 3 and 6 months after study admission. Significant between-group differences in cognitive flexibility were found at both follow-up time points, favoring COPM strategy training vs. attention training.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that strategy training using the COPM is more effective than a comparison intervention (attention training) in improving cognitive flexibility in patients with stroke.

Functional independenceEffective1b

One high quality RCT (Skidmore et al., 2015a) investigated the effect of strategy training using the Canadian Occupational Performance Measure (COPM) on functional independence in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive COPM strategy training or attention training for the duration of hospitalization (approx. 1-3 weeks). Functional independence was measured by the Functional Independence Measure (FIM) at 3 and 6 months after study admission (follow-up). Significant between-group differences in functional independence were found at both follow-up time points, favoring COPM strategy training vs. attention training.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that strategy training using the COPM is more effective than a comparison intervention (attention training) in improving functional independence in patients with stroke.

InhibitionNot effective1b

One high quality RCT (Skidmore et al., 2015a) investigated the effect of strategy training using the Canadian Occupational Performance Measure (COPM) on inhibition in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive COPM strategy training or attention training for the duration of hospitalization (approx. 1-3 weeks). Inhibition was measured by the Delis-Kaplan Executive Functioning System (D-KEFS) Color Word Interference Test (inhibition scale) at 3 and 6 months after study admission. No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that strategy training using the COPM is not more effective than a comparison intervention (attention training) in improving inhibition in patients with stroke.

MoodEffective1b

A secondary analysis (Skidmore et al., 2015b) of one high quality RCT (Skidmore et al., 2015a) investigated the effect of strategy training using the Canadian Occupational Performance Measure (COPM) on apathy in patients with stroke. The high quality RCT (Skidmore et al., 2015a) randomized patients with acute/subacute stroke to receive strategy training using the COPM or attention training for the duration of hospitalization (approx. 1-3 weeks duration). Apathy was measured by the Apathy Evaluation Scale at 3 and 6 months after study admission. Significant between-group differences in apathy were found at 3 months after study admission only, favoring strategy training using the COPM vs. attention training.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that strategy training using the COPM is more effective than a comparison intervention (attention training) in improving apathy in patients with acute/subacute stroke.

Phase not specific to one period - Time pressure management

Cognitive functionNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on cognitive function in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Cognitive impairment was measured by the Symbol Digit Modalities Test at post-treatment (10 hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving cognitive impairment in patients with stroke.

FatigueNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on fatigue in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Fatigue was measured by the Fatigue Severity Scale at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving fatigue in patients with stroke.

Functional independenceNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on functional independence in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management or conventional therapy. Functional independence was measured by the Barthel Index at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving functional independence in patients with stroke.

Information intakeEffective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on information intake in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Information intake was measured by an information intake task (no. of strategies used, reproduction scores) at post-treatment (10 hours of treatment) and at follow-up (3 months). Significant between-group differences in information intake (no. of used strategies) were found at post-treatment, favoring time pressure management training vs. conventional therapy. These between-group differences were not maintained at follow-up.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is more effective than a comparison intervention (conventional therapy) in improving information intake in patients with stroke.

Inhibition / attentionNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on inhibition/attention in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Inhibition/attention was measured by the Stroop Color Word Task at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving inhibition/attention in patients with stroke.

Mental slowness processingNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on mental slowness processing in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Mental speed was measured by the Mental Slowness Observation Test (MSOT – no. of used strategies, no. of correct elements, time), and perceived consequence of mental slowness was measured by the Mental Slowness Questionnaire. Measures were taken at post-treatment (10 hours of treatment) and at follow-up (3 months). There were no significant between-group differences on either measure at post-treatment. There was a significant between-group difference in one measure of mental speed (MSOT – time) at follow-up, favoring time pressure management vs. conventional therapy.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving mental speed in patients with stroke. However, there was a long-term benefit resulting from time pressure management training.

MoodNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on depression in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Depression was measured by the Center for Epidemiologic Studies Depression Scale at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving depression in patients with stroke.

Processing speed and complex attentionNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on processing speed and complex attention in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Processing speed and complex attention were measured by the Trail Making A & B Test at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving processing speed and complex attention in patients with stroke.

Quality of lifeNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on quality of life in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management training or conventional therapy. Quality of life was measured by the EuroQol-5D at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving quality of life in patients with stroke.

Working memoryNot effective1b

One high quality RCT (Winkens et al., 2009) investigated the effect of time pressure management training on working memory in patients with stroke. This high quality RCT randomized patients with subacute/chronic stroke to receive time pressure management or conventional therapy. Working memory was measured by the Rey Auditory Verbal Learning Test and the Paced Auditory Serial Addition Test at post-treatment (10 of hours of treatment) and at follow-up (3 months). No significant between-group differences were found on either measure of working memory at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that time pressure management training is not more effective than a comparison intervention (conventional therapy) in improving working memory in patients with stroke.

Phase not specific to one period - Virtual reality

AttentionEffective2b

One poor quality RCT (Gamito et al., 2017) investigated the effect of virtual-reality (VR)-based rehabilitation on attention in patients with stroke. This poor quality RCT randomized patients (stage of stroke not specified) to receive immediate VR-based cognitive rehabilitation or delayed VR-based cognitive rehabilitation (no training). Attention was measured by the Toulouse-Pieron Test (work efficiency) at post-treatment (4-6 weeks). Significant between-group differences in attention were found at post-treatment, favoring VR-based cognitive rehabilitation vs. no training.

Conclusion: There is limited evidence (Level 2b) from one poor quality RCT that VR-based cognitive rehabilitation is more effective than no training in improving attention in patients with stroke.

Working memoryEffective2b

One poor quality RCT (Gamito et al., 2017) investigated the effect of virtual-reality (VR)-based rehabilitation on working memory in patients with stroke. This poor quality RCT randomized patients (stage of stroke not specified) to receive immediate VR-based cognitive rehabilitation or delayed VR-based cognitive rehabilitation (no training). Working memory was measured by the Wechsler Memory Scale (WMS – total score) and the Rey-Osterrieth Complex Figure test (ROCF – Immediate recall) at post-treatment (4-6 weeks). There were significant between-group differences in one measure of working memory (WMS total score) at post-treatment, favoring VR-based cognitive rehabilitation vs. no training.

Conclusion: There is limited evidence (Level 2b) from one poor quality RCT that VR-based cognitive rehabilitation is more effective than no training in improving working memory in patients with stroke.


Reference list:

Akerlund, E., Esbjörnsson, E., Sunnerhagen, K.S., Björkdahl, A. (2013). Can computerized working memory training improve impaired working memory, cognition and psychological health? Brain Injury, 27(13-4), 1649-57.
https://www.ncbi.nlm.nih.gov/pubmed/24087909

Faria, A. L., Andrade, A., Soares, L., & i Badia, S. B. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. Journal of NeuroEngineering and Rehabilitation, 13(1), 96.
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0204-z

Fish J, Manly T, Emslie H, Evans J & Wilson B. (2008). Compensatory strategies for acquired disorders of memory and planning: differential effects of a paging system for patients with brain injury of traumatic versus cerebrovascular etiology. J Neurol Neurosurg Psychiatry, 79, 930-935.
http://www.ncbi.nlm.nih.gov/pubmed/18039889

Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., & Barata, A. F. (2015). Cognitive training on stroke patients via virtual reality-based serious games. Disability and rehabilitation, 1-4.
http://www.tandfonline.com/doi/abs/10.3109/09638288.2014.934925

Lin, Z.C., Tao, J., Gao, Y.L., Yin, D.Z., Chen, A.Z., Chen, L.D. (2014). Analysis of central mechanism of cognitive training on cognitive impairment after stroke: resting-state functional magnetic resonance imaging study. Journal of International Medical Research, 42 (3), 659-68.
https://www.ncbi.nlm.nih.gov/pubmed/24722262

Lundqvist, A., Grundström, K., Samuelsson, K., Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 1173-83.
https://www.ncbi.nlm.nih.gov/pubmed/20715888

Man, D.W.K., Soong, W.Y.L., Tam, S.F., & Hui-Chan, C.W.Y. (2006). A randomized clinical trial study on the effectiveness of a tele-analogy-based problem-solving programme for people with acquired brain injury (ABI). NeuroRehabilitation, 21, 205-17.
https://www.ncbi.nlm.nih.gov/pubmed/17167189

Poulin, V., Korner-Bitensky, N., Bherer, L., Lussier, M., & Dawson, D.R. (2016). Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: a pilot study. Disability and Rehabilitation, ISSN: 0963-8288.
https://www.ncbi.nlm.nih.gov/pubmed/26750772

Prokopenko, S.V., Mozheyko, E.Y., Petrova, M.M., Koryagina, T.D., Kaskaeva, D.S., Chernykh, T.V., et al. (2013). Correction of post-stroke cognitive impairments using computer programs. Journal of the Neurological Sciences, 325 (1), 148-53.
http://www.ncbi.nlm.nih.gov/pubmed/23312291

Skidmore, E.R., Dawson, D.R., Butters, M.A., Grattan, E.S., Juengst, S.B., Whyte, E.M., Begley, A., Holm, M.B., & Becker, J.T. (2015a). Strategy training shows promise for addressing disability in the first 6 months after stroke. Neurorehabilitation and Neural repair, 29(7), 668-76.
https://www.ncbi.nlm.nih.gov/pubmed/25505221

Skidmore, E.R., Whyte, E.M., Butters, M.A., Terhorst, L., & Reynolds III, C.F. (2015b). Strategy training during inpatient rehabilitation may prevent apathy symptoms after acute stroke. Physical Medicine and Rehabilitation, 7, 562-70.
https://www.ncbi.nlm.nih.gov/pubmed/25595665

Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.L., Bartfai, A., et al. (2007). Computerized working memory training after stroke – a pilot study. Brain Injury, 21(1), 21-9.
https://www.ncbi.nlm.nih.gov/pubmed/17364516

Winkens, I., Van Heugten, C.M., Wade, D.T., Habets, E.J., & Faostti, L. (2009). Efficacy of time pressure management in stroke patients with slowed information processing: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 90, 1672-9.
http://www.ncbi.nlm.nih.gov/pubmed/19801055

Wolf, T.J., Polatajko, H., Baum, C., Rios, J., Cirone, D., Doherty, M., & McEwen, S. (2016). Combined cognitive-strategy and task-specific training affects cognition and upper-extremity function in subacute stroke: an exploratory randomized controlled trial. The American Journal of Occupational Therapy, 70(2), 1-10.
http://www.ncbi.nlm.nih.gov/pubmed/26943113

Zucchella, C., Capone, A., Codella, V., Vecchione, C., Buccino, G., Sandrini, G., et al. (2014). Assessing and restoring cognitive functions early after stroke. Functional Neurology, 29(4), 255.
https://www.ncbi.nlm.nih.gov/pubmed/25764255


Excluded Studies:

Excluded References and Reasons for Exclusion

Hildebrandt, H., Bussmann-Mork, B., & Schwendemann, G. (2006). Group therapy for memory impaired patients: a partial remediation is possible. Journal of Neurology253(4), 512-519.
Reason for exclusion: all groups received a form of memory training with varying intensities/strategies.

Jorge, R.E., Acion, L., Moser, D., Adams, Jr H.P., Robinson, R.G. (2010). Escitalopram and enhancement of cognitive recovery following stroke. Archives of General Psychiatry, 67(2), 187-96.
Reason for exclusion: main intervention is a medicament.

Lannin, N.A., Schmidt, J., Carr, B., Allaous, J., Falcon, A., & Tate, R. (2014). Occupational therapy training to use handheld personal digital assistant (PDA) devices to address memory and planning difficulties after acquired brain injury: a randomised controlled trial. Stroke, 45(12), 296.
Reason for exclusion: 5/42 patients are with stroke (i.e. <50%).

Poulin, V., Korner-Bitensky, N., Dawson, D.R., & Bherer, L. (2012). Efficacy of executive function interventions after stroke: a systematic review. Topics in Stroke Rehabilitation, 19(2), 158-71. Reason for exclusion: review.

Rozental-Iluz, C., Zeiling, G., Weingarden, H., & Rand, D. (2016). Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke. European Journal of Physical and Rehabilitation Medicine, 52(4), 508-15. Reason for exclusion: nature of the intervention.