Acupuncture

Evidence Reviewed as of before: 11-08-2017
Author(s)*: Tatiana Ogourtsova, PhD(c) OT; Marc-André Roy, MSc; Nicol Korner-Bitensky, PhD; Robert Teasell, MD; Norine Foley, BASc; Sanjit Bhogal, MSc; Jamie Bitensky, MSc OT; Mark Speechley, MD; Annabel McDermott, OT
Patient/Family Information Table of contents

Introduction

Acupuncture is an ancient Chinese therapy involving the stimulation of specific trigger points along the body’s 18 meridian lines to help regulate the flow of Qi (energy). The meridian lines represent the normal flow of Qi through the body. It is believed that when this energy is disrupted, disease ensues. The use of thin metal needles or other acupuncture techniques is proposed to conduct Qi through its correct paths. The trigger points used are areas of the skin where Qi flows close to the surface and thus can be reached by the various acupuncture therapies.

While the exact mechanisms are not well defined in terms of Western medicine, there are biological responses that occur directly at the stimulus point and indirectly at other parts of the body. In addition to the use of fine needles, other methods of acupuncture include:

  • electro-acupuncture (current through the needles),
    L'électro-acupuncture
    Pictures courtesy of Ricardo Miranda,L.Ac
  • cupping (suction cups on trigger points),
    les ventouses
    Pictures courtesy of Ricardo Miranda,L.Ac
  • acupressure using trigger points (applying pressure with fingers or instruments),
  • reflexology (using pressure on the soles of the feet and inferior ankle to stimulate various parts of the body),
  • moxibustion (heat at trigger points, often combined with needles),la moxibustion
    la moxibustion
    Pictures courtesy of Ricardo Miranda,L.Ac
  • auriculotherapy (stimulating trigger points on the ear to affect other parts of the body),
  • laserpuncture and sonopuncture (using sound waves over trigger points).

Acupuncture has been used to treat many types of health problems and in the past decade has been advocated by some for the treatment of stroke. Recently, a number of studies have explored the use of acupuncture in stroke rehabilitation.

Patient/Family Information

Author: Tatiana Ogourtsova, PhD(c) OT, Marc-André Roy, MSc

What is acupuncture?

Acupuncture comes from ancient Chinese medicine. It has been used to treat pain in China for about 3000 years. The Chinese explanation involves Qi (pronounced Chee), an energy that flows through the body. The belief is that when this Qi is balanced (Yin and Yang), then the body is healthy. Qi flows through different lines within your body called “meridians”. With the most common form of acupuncture, an expert puts very small needles into specific areas of your body where Qi flows close to the surface of the skin.

There is some evidence that acupuncture works after operations to stop pain, after chemotherapy to stop feeling sick and vomiting, during pregnancy to stop feeling sick and after dental surgery for dental pain. It has also been used to treat headaches, tennis elbow, fibromyalgia (general muscle pain), low back pain, carpal tunnel syndrome and asthma.

While we are not sure exactly how it works, 3 possible explanations have been given:

  • Acupuncture blocks pain from traveling in your nerves
  • Acupuncture causes your body to make chemicals that prevent pain
  • Acupuncture opens or closes your veins and arteries in important areas of the body

Are there different kinds of acupuncture?

The most popular acupuncture is performed by putting thin metal needles into the skin. Other forms of acupuncture include:

  • electro-acupuncture, which again uses needles through which very small electrical currents are passed;L'électro-acupuncturePictures courtesy of Ricardo Miranda,L.Ac
  • auriculotherapy, which uses either needles or pressure on different spots of the ear which are trigger points for the entire body;
  • moxibustion, which uses heat at different spots on the body;moxibustion moxibustionPictures courtesy of Ricardo Miranda,L.Ac
  • sonopuncture, which uses sound waves at different spots on the body
  • cupping, which uses suction cups over areas such as the back or the legs to pull blood and other fluids in the area under the skin;cuppingPictures courtesy of Ricardo Miranda,L.Ac
  • acupressure, which uses pressure on different spots on the body;
  • reflexology, which uses pressure under the feet or the back part of the ankles.

Why use acupuncture after a stroke?

Acupuncture has been used after a stroke to treat spasticity (stiffness of muscles caused by the stroke), loss of function, loss of mobility, depression, aphasia (loss of speaking and writing skills), hemiplegia (loss of feeling and/or power to move one side of the body) and for pain reduction.

Does it work for stroke?

Experts have done some experiments to compare acupuncture with other treatments to see whether acupuncture helps people who have had a stroke.

In individuals with ACUTE stroke (< 4 weeks after stroke)
Thirteen high quality studies and 7 fair quality studies found that acupuncture:

  • Was not more helpful than other treatments for improving cognitive skills (e.g. memory, language); mood (e.g. depression); self-care skills (e.g. dressing, shopping); quality of life; physical skills (e.g. strength, range of motion, sensation, motor function of arms and legs); or mobility (e.g. balance, walking speed); but
  • Was more helpful than the usual treatment for improving swallowing skills and swallowing safety.

In individuals with SUBACUTE stroke (1 to 6 months after stroke)
One high quality study found that acupuncture:

  • Was not more helpful than pretend acupuncture for improving range of motion.

In individuals with CHRONIC stroke (> 6 months after stroke)
Three high quality studies and 1 low quality study found that acupuncture:

  • Was not more helpful than pretend acupuncture for improving mood (e.g. depression); self-care skills (e.g. dressing); mobility (e.g. walking endurance); physical skills (e.g. spasticity, range of motion, strength) or pain.

What can I expect?

Most people find that having acupuncture treatment causes very little pain, if any. In most cases you feel the needle going in, but it doesn’t hurt. Some people say they feel cramping, heaviness or tingling at the needle site or up the “meridian”.

The acupuncturist may use other treatments once the needles are in place. This depends on his/her training.

Side effects/risks?

As with any other use of needles, sanitation is very important to not spread germs. All acupuncturists should use new, individually packaged, disposable needles. If these are not used, don’t agree to treatment.

There is little risk related to acupuncture if done by a qualified professional. Side effects could include dizziness, feeling sick and feeling tired after treatment. There could also be a little bleeding at the needle site and some slight bruising. There is always a slight risk of infection when putting needles in the skin.

Who provides the treatment?

Acupuncture should be practiced by a trained health professional. For example, in Quebec (Canada) the practice of acupuncture is regulated by a professional Order and only members of the Order can practice it. Different health care professionals such as physicians and physiotherapists may use the trigger point needle technique as part of their treatment.

How many treatments?

This depends on the reason you are getting acupuncture. You should discuss the treatment plan with the acupuncturist before starting treatment. You might receive anywhere from one to 15 treatment sessions.

How much does it cost? Does insurance pay for It?

Acupuncture is not paid for by provincial insurance plans. However, it is covered by some private insurance plans. The cost for each session may vary from $40.00 to $90.00.

Is acupuncture for me?

Although the benefits of acupuncture have been talked about for hundreds of years, there is no strong scientific evidence that it works to reduce spasticity, loss of function, loss of mobility, depression, aphasia or pain. Yet, there are some people who say they have found it helpful.

Clinician Information

Note: When reviewing the findings, it is important to note that they are always made according to randomized clinical trial (RCT) criteria – specifically as compared to a control group. To clarify, if a treatment is “effective” it implies that it is more effective than the control treatment to which it was compared. Non-randomized studies are no longer included when there is sufficient research to indicate strong evidence (level 1a) for an outcome.

The current module includes 35 RCTs including 25 high quality RCTs, nine fair quality RCTs and one poor quality RCT. Numerous outcome measures were used throughout studies and outcomes include balance, cognitive function, dexterity, depression, functional independence, motor function, quality of life, swallowing function, etc. Studies conducted with patients in one phase of stroke recovery, be it the acute, subacute, or chronic phases of stroke recovery, predominantly reported that acupuncture was not more effective than comparison interventions in improving most outcomes (with the exception of dysphagia and swallowing function). By comparison, studies that included patients across stages of stroke recovery (e.g. patients in the acute or subacute phases of stroke recovery) generally reported that acupuncture was more effective than comparison interventions in improving outcomes (especially those related to cognitive function, health related quality of life, insomnia, mobility and swallowing function).

Results Table

View results table

Outcomes

Acute Phase

Balance
Not effective
1b

One high quality RCT (Hsieh et al., 2007) and one fair quality RCT (Johansson et al., 1993) investigated the effect of acupuncture on balance in patients with acute stroke.

The high quality RCT (Hsieh et al., 2007) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Balance was measured by the Fugl-Meyer Assessment (FMA – Balance) during treatment (2 weeks), at post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). No significant between-group differences were found at any time point.

The fair quality RCT (Johansson et al., 1993) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Balance was measured by the modified Chart for Motor Capacity Assessment – Balance at mid-treatment (1 month post-stroke), and follow-up (3 months post-stroke); measures were not taken at post-treatment (10 weeks). Significant between-group differences were found at both time points, favoring electroacupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (conventional rehabilitation with no acupuncture) in improving balance in patients with acute stroke.
Note: 
However, one fair quality RCT found that acupuncture was more effective than no acupuncture in improving balance in patients with acute stroke; the studies differed in duration of the intervention (4 weeks vs. 10 weeks) and outcome measures used to assess balance.

Cognitive function
Not effective
1a

Two high quality RCTs (Rorsman & Johansson, 2006Chen et al., 2016) investigated the effect of acupuncture on cognitive function in patients with acute stroke.

The first high quality RCT (Rorsman & Johansson, 2006) randomized patients to receive acupuncture (including electroacupuncture), high intensity/low frequency transcutaneous electrical nerve stimulation TENS) or low intensity (subliminal)/high frequency TENS. Cognitive function was measured by the Mini-Mental State Examination (MMSE) at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between-group differences were found at either time point.

The second high quality RCT (Chen et al., 2016) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Cognitive function was measured by the MMSE and the Montreal Cognitive Assessment (MOCA) at baseline, at post-treatment (3 weeks) and at follow-up (7 weeks). There were no significant between-group differences on either measure at post-treatment. There were significant differences in change scores on both measures from baseline to follow-up, favoring acupuncture vs. no acupuncture.

Conclusion: There is strong evidence (Level 1a) from 2 high quality RCTs that acupuncture is not more effective than comparison interventions (TENS, conventional rehabilitation with no acupuncture) for improving cognitive function in patients with acute stroke.
Note: 
However, one of the high quality RCTs reported gains in favour of acupuncture at follow-up.

Depression
Not effective
1b

One high quality RCT (Rorsman & Johansson, 2006) investigated the effect of acupuncture on depression in patients with acute stroke. The high quality RCT randomized patients to receive acupuncture (including electroacupuncture), high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS. Depression was measured at follow-up (3- and 12-months post-stroke) by the Hospital Anxiety and Depression Scale and the Comprehensive Psychiatric Rating Scale; measures were not taken at post-treatment (10 weeks). No significant between-group differences were found on either measure at either follow-up time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than comparison interventions (high intensity/low frequency TENS, low intensity/high frequency TENS) in improving depression in patients with acute stroke.

Dexterity
Not effective
1a

Two high quality RCTs (Johansson et al., 2001Park et al., 2005) investigated the effect of acupuncture on dexterity in patients with acute stroke.

The first high quality RCT (Johansson et al., 2001) randomized patients to receive electroacupuncture, high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS; all groups received conventional rehabilitation. Dexterity was measured by the Nine Hole Peg Test (NHPT) at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between group differences were found at either follow-up time point.

The second high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Dexterity was measured by the NHPT at post-treatment (2 weeks). No significant between-group differences were found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than comparison interventions (TENS, sham acupuncture) in improving dexterity in patients with acute stroke.

Dysphagia
Effective
1b

One high quality RCT (Xia et al., 2016) investigated the effect of acupuncture on functional severity of dysphagia in patients with acute stroke and subsequent dysphagia. This high quality RCT randomized patients to receive acupuncture or no acupuncture; both groups received standard swallowing training. Functional severity of dysphagia was measured by the Dysphagia Outcome and Severity Scale at post-treatment (4 weeks). Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that swallowing training with acupuncture is more effective than a comparison intervention (swallowing training with no acupuncture) in improving functional severity of dysphagia in patients with acute stroke and subsequent dysphagia.

Functional independence
Not effective
1a

Ten high quality RCTs (Gosman-Hedstrom et al., 1998Johansson et al., 2001Sze et al., 2002Park et al., 2005Hsieh et al., 2007Hopwood et al., 2008Zhu et al., 2013Li et al., 2014Liu et al., 2016Xia et al., 2016) and six fair quality RCTs (Hu et al., 1993Johansson et al., 1993Wong et al., 1999Pei et al., 2001Min et al., 2008Wang et al., 2014) investigated the effect of acupuncture on functional independence in patients with acute stroke.

The first quality RCT(Gosman-Hedstrom et al., 1998) randomized patients to receive deep electroacupuncture, superficial acupuncture or no acupuncture; all groups received conventional rehabilitation. Functional independence was measured by the Barthel Index (BI) and Sunnaas Index at post-treatment (3 months) and at follow-up (12 months). No significant between-group differences were found on any measure at either time point.

The second high quality RCT(Johansson et al., 2001) randomized patients to receive electroacupuncture, high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS; all groups received conventional rehabilitation. Functional independence was measured by the BI at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between group differences were found at either follow-up time point.

The third high quality RCT(Sze et al., 2002) randomized patients to receive manual acupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI and the Functional Independence Measure (FIM) at post-treatment (10 weeks). No significant between-group differences were found on any measure.

The forth high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Functional independence was measured by the BI at post-treatment (2 weeks). No significant between-group differences were found.

The fifth high quality RCT (Hsieh et al., 2007) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the FIM (total, self-care, social, mobility, locomotion, sphincter control, communication) during treatment (2 weeks), at post-treatment (4 weeks), and follow-up (3- and 6-months post-stroke). A significant between-group difference was found on only one score (FIM – social) during treatment (2 weeks), favoring electroacupuncture vs. no acupuncture. There were no other significant between-group differences on any measure, at any time point.

The sixth high quality RCT (Hopwood et al., 2008) randomized patients to receive electroacupuncture or placebo electroacupuncture. Functional independence was measured by the BI during treatment (3 weeks) and at several follow-up time points (6, 12, 25, and 52 weeks); measures were not taken at post-treatment (4 weeks). No significant between-group differences were found at any time point.

The seventh high quality RCT(Zhu et al., 2013) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI at mid-treatment (1 month), post-treatment (3 months) and follow-up (6 months). No significant between-group differences were found at any time point.

The eighth high quality RCT (Li et al., 2014) randomized patients to receive verum acupuncture or sham acupuncture. Functional independence was measured by the modified BI and the modified Rankin Scale (mRS) at baseline, at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (12 weeks). Significant between-group differences were found at post-treatment (both measures) and at follow-up (BI only), favoring verum acupuncture vs. sham acupuncture.
Note: Differences at post-treatment reflect change scores from baseline to post-treatment; differences at follow-up reflect scores at that time point as well as change scores from baseline to follow-up.

The ninth high quality RCT (Liu et al., 2016) randomized patients to receive manual acupuncture or no acupuncture. Functional independence was measured by the BI,the mRS and the FIM at post-treatment (2 weeks: FIM) and at follow-up (3 weeks: FIM; 1 month: FIM; 3 months: MRS, BI). No significant between-group differences were found on any measure at any time point.

The tenth high quality RCT (Xia et al., 2016) randomized patients to receive acupuncture or no acupuncture; both groups received standard swallowing training. Functional independence was measured by the modified BI at post-treatment (4 weeks). Significant between group differences were found, favoring acupuncture vs. no acupuncture.

The first fair quality RCT (Hu et al., 1993) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI at post-treatment (4 weeks) and at follow-up (3 months). No significant between-group differences were found at either time point.

The second fair quality RCT (Johansson et al., 1993) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI at mid-treatment (1 month post-stroke) and at two follow-up timepoints (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). Significant between-group differences were found at all time points, favoring electroacupuncture vs. no acupuncture.

The third fair quality RCT (Wong et al., 1999) randomized patients to receive electroacupuncture or no acupuncture. Functional independence was measured by the FIM (total, self-care, locomotion, sphincter control, transfers, communication, social interaction) at post-treatment (2 weeks). Significant between-group differences were found (FIM total, self-care, locomotion), favoring electroacupuncture vs. no acupuncture.

The forth fair quality RCT (Pei et al., 2001) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI mid-treatment (1 and 2 weeks), at post-treatment (4 weeks) and at follow-up (3 months). Significant between-group differences were found at all time points, favoring electroacupuncture vs. no acupuncture.

The fifth fair quality RCT (Min et al., 2008) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the modified BI at post-treatment (3 months). Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

The sixth fair quality RCT (Wang et al., 2014) randomized patients to receive electroacupuncture or no electroacupuncture; both groups received conventional rehabilitation. Functional independence was measured by the BI at follow-up (3 and 6 months); measures were not taken at post-treatment (4 weeks). Significant between-group differences were found at 6-month follow-up only, favoring electroacupuncture vs. no electroacupuncture.

Conclusion: There is strong evidence (Level 1a) from eight high quality RCTs and one fair quality RCT that acupuncture is not more effective than comparison interventions (superficial acupuncture, no acupuncture, TENS, conventional rehabilitation, sham or placebo acupuncture) in improving functional independence in patients with acute stroke.
Note:
However, two high quality RCTs and five fair quality RCTs found that acupuncture was more effective than comparison interventions (sham acupuncture, standard swallowing training, no acupuncture, conventional rehabilitation) in improving functional independence in patients with acute stroke.

Health-related quality of life (HRQoL)
Not effective
1a

Five high quality RCTs (Gosman-Hedstrom et al., 1998; Johansson et al., 2001; Park et al., 2005; Hopwood et al., 2008Li et al., 2014) and one fair quality RCT (Johansson et al., 1993) investigated the effect of acupuncture on health-related quality of life (HRQoL) in patients with acute stroke.

The first high quality RCT (Gosman-Hedstrom et al., 1998) randomized patients to receive deep electroacupuncture, superficial acupuncture or no acupuncture; all groups received conventional rehabilitation. HRQoL was measured by the Nottingham Health Profile (NHP – energy level, pain, emotional reaction, sleep, social isolation, physical abilities) at post-treatment (3 months) and at follow-up (12 months). There were no significant between-group differences at post-treatment; there was a significant between-group difference in one component of HRQoL (physical abilities) at follow-up, favoring deep electroacupuncture vs. no acupuncture.

The second high quality RCT (Johansson et al., 2001) randomized patients to receive electroacupuncture, high intensity/low TENS or low intensity (subliminal)/high frequency TENS; all groups received conventional rehabilitation. HRQoL was measured by the NHP at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between group differences were found at both follow-up time points.

The third high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. HRQoL was measured by the EuroQoL (EuroQoL5 – Visual Analogue Scale) at post-treatment (2 weeks). No significant between-group differences were found.

The forth high quality RCT (Hopwood et al., 2008) randomized patients to receive electroacupuncture or placebo electroacupuncture. HRQoL was measured by the NHP during treatment (3 weeks) and at follow-up (6, 12, 25, and 52 weeks). There was a significant between-group difference in one score (NHP – Energy) during treatment and at all follow-up time points, favoring electroacupuncture vs. placebo acupuncture.

The fifth high quality RCT (Li et al., 2014) randomized patients to receive verum acupuncture or sham acupuncture. HRQoL was measured by the Stroke Specialization Quality of Life Scale (SS-QoL) at baseline, at mid-treatment (2 weeks), post-treatment (4 weeks), and at follow-up (12 weeks). Significant between-group differences were found at post-treatment and at follow-up, favoring verum acupuncture vs. sham acupuncture.
Note: Differences at post-treatment reflect change scores from baseline to post-treatment; differences at follow-up reflect scores at that time point as well as change scores from baseline to follow-up.

The fair quality RCT (Johansson et al., 1993) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. HRQoL was measured by the modified NHP at follow-up (3, 6 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). There were significant between-group differences in some components of HRQoL at 3 months post-stroke (energy, mobility, emotion, social isolation), at 6 months post-stroke (energy, mobility, emotion, social isolation, sleep), and at 12 months post-stroke (mobility, emotion), favoring electroacupuncture vs. no acupuncture.

Conclusion: There is strong evidence (Level 1a) from four high quality RCTs that acupuncture is not more effective than comparison interventions (superficial acupuncture, no acupuncture, TENS, sham or placebo acupuncture) in improving health-related quality of life in patients with acute stroke.
Note
: However, one high quality RCT found that acupuncture was more effective than a comparison intervention (sham acupuncture); this study used the SS-QoL to measure quality of life, rather than the NHP used by most other studies. In addition, one fair quality RCT found that acupuncture was more effective than no acupuncture in improving some components of the health-related quality of life.

Instrumental activities of daily living (IADLs)
Not effective
1b

One high quality RCT (Park et al., 2005) investigated the effect of acupuncture on IADLs in patients with acute stroke. This high quality RCT randomized patients to receive manual acupuncture or sham acupuncture. IADLs were measured by the Nottingham Extended ADL scale at post-treatment (2 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (sham acupuncture) in improving IADLs in patients with acute stroke.

Language function
Not effective
1b

One high quality RCT (Rorsman & Johansson, 2006) investigated the effect of acupuncture on language function with acute stroke. This high quality RCT randomized patients to receive acupuncture (including electroacupuncture), high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS. Language function was measured by the Token Test and FAS Word Fluency Test at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between-group differences were found on any measure at either follow-up time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than comparison interventions (TENS) in improving language function in patients with acute stroke.

Memory
Not effective
1b

One high quality RCT (Rorsman & Johansson, 2006) investigated the effect of acupuncture on memory in patients with acute stroke. This high quality RCT randomized patients to receive acupuncture (including electroacupuncture), high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS. Memory was measured by the Rey Auditory Verbal Learning Test and Facial Recognition Memory Test at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between-group differences were found on either measure of memory at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than comparison interventions (TENS) in improving memory in patients with acute stroke.

Mobility
Not effective
1b

One high quality RCT (Johansson et al., 2001) and one fair quality RCT (Johansson et al., 1993) investigated the effect of acupuncture on mobility in patients with acute stroke.

The high quality RCT (Johansson et al., 2001) randomized patients to receive electroacupuncture, high intensity/low TENS or low intensity (subliminal)/high frequency TENS; all groups received conventional rehabilitation. Mobility was measured by the Rivermead Mobility Index at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between-group differences were found at either follow-up time point.

The fair quality RCT (Johansson et al., 1993) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Mobility was measured by the modified Chart for Motor Capacity Assessment (Walking) at mid-treatment (1 month post-stroke) and at follow-up (3 months post-stroke); measures were not taken at post-treatment (10 weeks). Significant between-group differences were found at both time points, favoring electroacupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that electroacupuncture is not more effective than comparison interventions (TENS) in improving mobility in patients with acute stroke.
Note: 
However, one RCT found that acupuncture was more effective than no acupuncture in improving mobility in patients with acute stroke.

Motor function
Conflicting
4

Five high quality RCTs (Sze et al., 2002Hsieh et al., 2007Tan et al., 2013Li et al., 2014Liu et al., 2016) and three fair quality RCTs (Johansson et al., 1993Pei et al., 2001Min et al., 2008) investigated the effect of acupuncture on motor function in patients with acute stroke.

The first high quality RCT (Sze et al., 2002) randomized patients to receive manual acupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function measured by the Fugl-Meyer Assessment (FMA) at post-treatment (10 weeks). No significant between-group differences were found.

The second high quality RCT (Hsieh et al., 2007) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the FMA (total score) at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). Significant between-group differences were found at mid-treatment, post-treatment and at 3 months post-stroke, favoring electroacupuncture vs. no acupuncture.

The third high quality RCT (Tan et al., 2013) randomized patients to receive electroacupuncture or no electroacupuncture. Motor function was measured by the FMA at post-treatment (14 days). Significant between-group differences were found at post-treatment, favoring electroacupuncture vs. no electroacupuncture.

The fourth high quality RCT (Li et al., 2014) randomized patients to receive verum acupuncture or sham acupuncture. Motor function was measured by the FMA – Upper and Lower Extremity scores combined at baseline, at mid-treatment (2 weeks), at post-treatment (4 weeks), and at follow-up (12 weeks). Significant between-group differences were found at post-treatment and at follow-up, favoring verum acupuncture vs. sham acupuncture.
Note: Differences at post-treatment reflect change scores from baseline to post-treatment; differences at follow-up reflect scores at that time point as well as change scores from baseline to follow-up.

The fifth high quality RCT (Liu et al., 2016) randomized patients to receive manual acupuncture or no acupuncture. Motor function was measured by the FMA at follow-up (1 month); measures were not taken at post-treatment (2 weeks). No significant between-group differences were found.

The first fair quality RCT (Johansson et al., 1993) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the modified Chart for Motor Capacity Assessment (motor function) at 1 and 3 months post-stroke (follow-up); measures were not taken at post-treatment (10 weeks). No significant between group differences were found at either time point.

The second fair quality RCT (Pei et al., 2001) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the FMA at mid-treatment (1 and 2 weeks), post-treatment (4 weeks) and at follow-up (3 months). Significant between-group differences were found at all time points, favoring electroacupuncture vs. no acupuncture.

The third fair quality RCT (Min et al., 2008) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the FMA at post-treatment (3 months). A significant between-group difference was found at post-treatment, favoring acupuncture vs. no acupuncture.

Conclusion: There is conflicting evidence (Level 4) regarding the effect of acupuncture on motor function. Two high quality RCTs and one fair quality RCT reported that acupuncture is not more effective than no acupuncture, whereas two other high quality RCTs and two fairquality RCTs found that acupuncture was more effective than comparison interventions (no/sham acupuncture) in improving motor function in patients with acute stroke. A fifth high quality RCT also reported of significant differences in change scores at post-treatment and follow-up.
Note:
There was significant variation between studies in type, frequency and duration of acupuncture.

Motor function - lower extremity
Not effective
1a

Three high quality RCTs (Hsieh et al., 2007Zhu et al., 2013Chen et al., 2016) and two fair quality RCTs (Wong et al., 1999Min et al., 2008) investigated the effect of acupuncture on lower extremity motor function in patients with acute stroke.

The first quality RCT (Hsieh et al., 2007) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Lower extremity motor function was measured by the Fugl Meyer Assessment (FMA – hip/knee/ankle motor function, lower extremity coordination and speed) at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). No significant between-group differences were found at any time point.

The second high quality RCT (Zhu et al., 2013) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Lower extremity motor function was measured by the Fugl-Meyer Assessment – Lower Extremity (FMA-LE) at mid-treatment (1 month), post-treatment (3 months), and at follow-up (6 months). No significant between-group differences were found at any time point.

The third high quality RCT (Chen et al., 2016) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Lower extremity motor function was measured by the FMA-LE at baseline, at post-treatment (3 weeks) and at follow-up (7 weeks). There were no significant differences at post-treatment; there were significant differences in change scores from baseline to follow-up, favoring acupuncture vs. no acupuncture.

The first fair quality RCT (Wong et al., 1999) randomized patients to receive electroacupuncture or no acupuncture. Lower extremity motor function was measured using Brunnstrom’s lower limb motor recovery at post-treatment (2 weeks). Significant between-group differences were found, favoring electroacupuncture vs. no acupuncture.

The second fair quality RCT (Min et al., 2008) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Lower extremity motor function was measured by the FMA–LE at post-treatment (3 months). Significant between-group difference were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is strong evidence (level 1a) from 3 high quality RCTs that acupuncture is not more effective than a comparison intervention (no acupuncture) for improving lower extremity motor function in patients with acute stroke.
Note: 
One of the high quality RCTs reported a significant difference in change scores at follow-up, in favour of acupuncture vs. no acupuncture. Further, two fair quality RCTs reported that acupuncture was more effective than no acupuncture. There was significant variation in the frequency and duration of interventions.

Motor function - upper extremity
Not effective
1a

Three high quality RCTs (Hsieh et al., 2007Zhu et al., 2013Chen et al., 2016) and two fair quality RCTs (Wong et al., 1999Min et al., 2008) investigated the effect of acupuncture on upper extremity motor function in patients with acute stroke.

The first high quality RCT (Hsieh et al., 2007) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Upper extremity motor function was measured by the Fugl Meyer Assessment (FMA – shoulder / elbow / wrist / hand motor function, upper extremity coordination and speed) during treatment (2 weeks), at post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). Significant between-group differences were found during treatment (FMA – hand motor function, upper extremity coordination and speed), post-treatment (FMA – wrist motor function, hand motor function, upper extremity coordination and speed), and at both follow-up time points (FMA – wrist motor function, hand motor function, upper extremity coordination and speed), favoring electroacupuncture vs. no acupuncture.

The second high quality RCT (Zhu et al., 2013) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Upper extremity motor function was measured by the Fugl-Meyer Assessment – Upper Extremity scale (FMA-UE) at mid-treatment (1 month), post-treatment (3 months) and follow-up (6 months). No significant between-group differences were found at any time point.

The third high quality RCT (Chen et al., 2016) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Upper extremity motor function was measured by the FMA-UE at post-treatment (3 weeks) and follow-up (7 weeks). No significant between-group differences were found at either time point.

The first fair quality RCT (Wong et al., 1999) randomized patients to receive electroacupuncture or no acupuncture. Upper extremity motor function was measured by Brunnstrom’s upper limb motor recovery at post-treatment (2 weeks). Significant between-group differences were found, favoring electroacupuncture vs. no acupuncture.

The second fair quality RCT (Min et al., 2008) randomized patients to receive acupuncture or no acupuncture; both groups received conventional rehabilitation. Upper extremity motor function was measured by the FMA-UE at post-treatment (3 months). A significant between-group difference was found, favoring acupuncture vs. no acupuncture.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving upper extremity motor function in patients with acute stroke.
Note: 
However; one high quality RCT and two fair quality RCTs found that acupuncture was more effective than a comparison intervention (no acupuncture) in improving upper extremity motor function in patients with acute stroke. Studies varied in terms of the intervention, frequency (2-6 times/week) and duration (2 weeks – 3 months) of the intervention, and outcome measures used.

Range of motion
No effective
1b

One high quality RCT (Hsieh et al., 2007) investigated the effect of acupuncture on range of motion in patients with acute stroke. This high quality RCT randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Range of motion was measured by the Fugl Meyer Assessment (FMA – range of motion) at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). There was a significant between-group difference in range of motion at 3 months post-stroke only, favoring electroacupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that electroacupuncture is not more effective than a comparison intervention (no acupuncture) in improving range of motion in patients with acute stroke.

Sensation
Not effective
1b

One high quality RCT (Hsieh et al., 2007) investigated the effects of acupuncture on sensation in patients with acute stroke. The high quality RCT randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Sensation was measured by the Fugl Meyer Assessment (FMA – sensation) at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (3 and 6 months post-stroke). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving sensation in patients with acute stroke.

Spasticity
Conflicting
4

Two high quality RCTs (Park et al., 2005; Li et al., 2014) investigated the effect of acupuncture on spasticity in patients with acute stroke.

The first high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Spasticity was measured by the Modified Ashworth Scale (MAS) at post-treatment (2 weeks). No significant between-group differences were found.

The second high quality RCT (Li et al., 2014) randomized patients to receive verum acupuncture or sham acupuncture. Spasticity was measured by the MAS at baseline, at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (12 weeks). Significant between-group differences in spasticity were found at post-treatment and follow-up, favoring verum acupuncture vs. sham acupuncture.
Note: Differences at post-treatment reflect change scores from baseline to post-treatment; differences at follow-up reflect scores at that time point as well as change scores from baseline to follow-up.

Conclusion: There is conflicting evidence (Level 4) regarding the effect of acupuncture on spasticity in patients with acute stroke. While one high quality RCT found manual acupuncture (2 weeks duration) was not more effective than sham acupuncture, a second high quality RCT reported a significant difference in change scores following verum acupuncture (4 weeks duration), in improving spasticity in patients with acute stroke.

Strength
Not effective
1a

Two high quality RCTs (Park et al., 2005; Hopwood et al., 2008) investigated the effect of acupuncture on strength in patients with acute stroke.

The first high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Strength was measured by the Motricity Index (MI) at post-treatment (2 weeks). No significant between-group differences were found.

The second quality RCT (Hopwood et al., 2008) randomized patients to receive electroacupuncture or placebo electroacupuncture. Strength was measured by the MI at mid-treatment (3 weeks) and at follow-up (6, 12, 25, and 52 weeks); measures were not taken at post-treatment (4 weeks). No significant between-group differences were found at any time point.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than comparison interventions (sham acupuncture, placebo electroacupuncture) in improving strength in patients with acute stroke.

Stroke outcomes
Not effective
1a

Seven high quality RCTs (Gosman-Hedstrom et al., 1998; Park et al., 2005; Tan et al., 2013; Li et al., 2014; Zhang et al., 2015; Chen et al., 2016, Liu et al., 2016) and three fair quality RCTs (Si et al., 1998; Pei et al., 2001; Wang et al., 2014) investigated the effect of acupuncture on stroke outcomes in patients with acute stroke.

The first high quality RCT (Gosman-Hedstrom et al., 1998) randomized patients to receive deep electroacupuncture, superficial acupuncture or no acupuncture; all groups received conventional rehabilitation. Stroke outcomes were measured by the Scandinavian Stroke Study Group – Neurological score at post-treatment (3 months) and follow-up (12 months). No significant between-group differences were found at either time point.

The second high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Stroke outcomes were measured by the National Institutes of Health Stroke Scale (NIHSS) at post-treatment (2 weeks). No significant between-group differences were found.

The third high quality RCT (Tan et al., 2013) randomized patients to receive electroacupuncture or no electroacupuncture. Stroke outcomes were measured by the Modified Edinburg Scandinavian Stroke Scale and the NIHSS at post-treatment (14 days). Significant between-group differences were found on both measures at post-treatment, favoring electroacupuncture vs. no electroacupuncture.

The forth high quality RCT (Li et al., 2014) randomized patients to receive verum acupuncture or sham acupuncture. Stroke outcomes were measured by the NIHSS at mid-treatment (2 weeks), post-treatment (4 weeks), and follow-up (12 weeks). No significant between-group differences were found at any time point.

The fifth high quality RCT (Zhang et al., 2015) randomized patients to receive acupuncture or no acupuncture. Stroke outcomes were measured by the Scandinavian Stroke Scale at post-treatment (3 weeks). Significant between-group differences were found, favoring acupuncture vs. no acupuncture.
Note: Results were significant only for participants who had received 10 or more acupuncture sessions.

The sixth high quality RCT (Chen et al., 2016) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Stroke outcomes were measured by the NIHSS at baseline, during treatment (1 week), at post-treatment (3 weeks), and follow-up (7 weeks). There were no significant differences between groups during treatment or at post-treatment. There was a significant between-group difference in change scores from baseline to follow-up, favoring acupuncture vs. no acupuncture.

The seventh high quality RCT (Liu et al., 2016) randomized patients to receive manual acupuncture or no acupuncture. Stroke outcomes were measured by the NIHSS at post-treatment (2 weeks) and follow-up (3, 4, 12 weeks). No significant between-group differences were found at any time point.

The first fair quality RCT (Si et al., 1998) randomized patients to receive electroacupuncture or no acupuncture. Stroke outcomes were measured by the Chinese Stroke Scale (CSS – total score, motor shoulder/hand/leg, level of consciousness, extraocular movements, facial palsy, speech, walking capacity) at discharge from hospital (average of 37±12 days). Significant between group differences in some stroke outcomes (CSS – total, motor shoulder/hand/leg) were found at discharge, favoring electroacupuncture vs. no acupuncture.

The second fair quality RCT (Pei et al., 2001) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Stroke outcomes were measured by the CSS during treatment (1 and 2 weeks), at post-treatment (4 weeks) and at follow-up (3 months). Significant between-group differences in stroke outcomes were found at 2 weeks, 4 weeks and 3 months, favoring electroacupuncture vs. no acupuncture.

The third fair quality RCT (Wang et al., 2014) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Stroke outcomes were measured by the NIHSS at post-treatment (4 weeks) and at follow-up (3 months). Significant between-group differences were found at post-treatment, favoring electroacupuncture vs. no electroacupuncture. These differences were not maintained at follow-up.

Conclusion: There is strong evidence (Level 1a) from five high quality RCTs that acupuncture is not more effective than comparison interventions (superficial/no/sham acupuncture) in improving stroke outcomes in patients with acute stroke.
Note:
However, two high quality RCTs and three fair quality RCTs found that acupuncture is more effective than a comparison intervention (no acupuncture) in improving stroke outcomes in patients with acute stroke. Differences between studies, including variation in the type of acupuncture, treatment frequency/duration and outcome measures used may account for this discrepancy in findings.

Swallowing function
Effective
1a

Three high quality RCTs (Park et al., 2005; Chen et al., 2016; Xia et al., 2016) investigated the effect of acupuncture on swallowing function in patients with acute stroke.

The first high quality RCT (Park et al., 2005) randomized patients to receive manual acupuncture or sham acupuncture. Swallowing function was measured by the Bedside Swallowing Assessment (BSA) at post-treatment (2 weeks). Significant between group differences were found, favoring sham acupuncture vs. manual acupuncture (i.e. participants who received manual acupuncture presented with a higher incidence of unsafe swallow than participants who received sham acupuncture).

The second high quality RCT (Chen et al., 2016) randomized patients to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Swallowing function was measured by the BSA at post-treatment (3 weeks) and follow-up (7 weeks), and by Videofluoroscopic Swallowing Study (VFSS) at follow-up (7 weeks). Significant between-group differences were found at post-treatment (BSA) and at follow-up (BSA, VFDSS), favoring acupuncture vs. no acupuncture.

The third high quality RCT (Xia et al., 2016) randomized patients to receive acupuncture or no acupuncture; both groups received standard swallowing training. Swallowing function was measured by the Standardized Swallowing Assessment at post-treatment (4 weeks). Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is more effective than a comparison intervention (no acupuncture) in improving swallowing function in patients with acute stroke.
Note:
However, one high quality RCT found that acupuncture was LESS effective than a comparison intervention (sham acupuncture) in improving swallowing function in patients with acute stroke.

Swallowing-related quality of life
Effective
1b

One high quality RCT (Xia et al., 2016) investigated the effects of acupuncture on swallowing-related quality of life in patients with acute stroke and subsequent dysphagia. This high quality RCT randomized patients to receive acupuncture or no acupuncture; both groups received standard swallowing training. Swallowing-related quality of life was measured with the Swallowing Related Quality of Life scale at post-treatment (4 weeks). Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is more effective than a comparison intervention (no acupuncture with standard swallowing training) in improving swallowing related quality of life in patients with acute stroke and subsequent dysphagia.

Unilateral spatial neglect
Not effective
1b

One high quality RCT (Rorsman & Johansson, 2006) investigated the effect of acupuncture on unilateral spatial neglect in patients with acute stroke. This high quality RCT randomized patients to receive acupuncture (including electroacupuncture), high intensity/low frequency TENS or low intensity (subliminal)/high frequency TENS. Unilateral spatial neglect was measured by the Star Cancellation Test and Time Perception Test at follow-up (3 and 12 months post-stroke); measures were not taken at post-treatment (10 weeks). No significant between-group differences were found on any measure at either time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than comparison interventions (TENS) in improving unilateral spatial neglect in patients with acute stroke.

Walking speed
Not effective
1b

One high quality RCT (Park et al., 2005) investigated the effect of acupuncture on walking speed in patients with acute stroke. This high quality RCT randomized patients to receive manual acupuncture or sham acupuncture. Walking speed was measured by the 10 Meter Walk Test at post-treatment (2 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (sham acupuncture) in improving walking speed in patients with acute stroke.

Subacute phase

Range of motion
Not effective
1b

One high quality RCT (Naeser et al., 1992) investigated the effect of acupuncture on range of motion in patients with subacute stroke. This high quality RCT randomized patients to receive electroacupuncture or sham acupuncture. Isolated active range of motion was measured at post-treatment (4 weeks). No significant between-group differences were found.
Note: A subgroup analysis of patients with the lesion in half or less than half of the motor pathway areas revealed significant between-group differences, favoring electroacupuncture vs. sham acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that electroacupuncture is not more effective than a comparison intervention (sham acupuncture) in improving isolated active range of motion in patients with subacute stroke.

Chronic phase

Depression
Not effective
1a

Two high quality RCTs (Fink et al., 2004; Wayne et al., 2005) investigated the effect of acupuncture on depression in patients with chronic stroke. This first high quality RCT (Fink et al., 2004) randomized patients to receive acupuncture or placebo acupuncture. Depression was measured by the von Zerssen Depression Scale at post-treatment (4 weeks) and follow-up (3 months). No significant between-group differences were found at either time point. 

The second high quality RCT (Wayne et al., 2005) randomized patients to receive acupuncture or sham acupuncture. Depression was measured by the Center for Epidemiological Surveys Depression at post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than a comparison intervention (placebo/sham acupuncture) in improving depression in patients with chronic stroke.

Functional independence
Not effective
1b

One high quality RCT (Wayne et al, 2005) investigated the effect of acupuncture on functional independence in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or sham acupuncture. Functional independence was measured by the Barthel Index at post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (sham acupuncture) in improving functional independence in patients with chronic stroke.

Gait parameters
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on gait parameters in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Gait parameters (step length, cadence, mode of initial foot contact) were measured at first treatment, post-treatment (4 weeks), and follow-up (3 months). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in improving gait parameters in patients with chronic stroke.

Grip strength
Not effective
1b

One high quality RCT (Wayne et al, 2005) investigated the effect of acupuncture on grip strength in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or sham acupuncture. Grip strength was measured by Jamar dynamometer at post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (sham acupuncture) in improving grip strength in patients with chronic stroke.

Health-related quality of life (HRQoL)
Not effective
1a

Two high quality RCTs (Fink et al., 2004; Wayne et al., 2005) investigated the effect of acupuncture on HRQoL in patients with chronic stroke.

This first high quality RCT (Fink et al., 2004) randomized patients to receive acupuncture or placebo acupuncture. HRQoL was measured by the Nottingham Health Profile and the Everyday Life Questionnaire at post-treatment (4 weeks) and follow-up (3 months). No significant between-group differences were found on either measure at either time point. 

The second high quality RCT (Wayne et al, 2005) randomized patients to receive acupuncture or sham acupuncture. HRQoL was measured by the Nottingham Health Profile at post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than a comparison intervention (placebo/sham acupuncture) in improving health-related quality of life in patients with chronic stroke.

Impression of improvement
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on impression of improvement in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Impression of improvement was measured by the Clinical Global Impressions Scale at first treatment, post-treatment (4 weeks), and follow-up (3 months). Significant between-group differences in patients’ impression of improvement were found at post-treatment, favoring placebo acupuncture vs. acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in increasing the impression of improvement in patients with chronic stroke. In fact, patients who received acupuncture showed lower impression of improvement as compared to those who received placebo acupuncture.

Mobility
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on mobility in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Mobility was measured by the Rivermead Mobility Index at first treatment, post-treatment (4 weeks), and follow-up (3 months). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in improving mobility in patients with chronic stroke.

Motor function
Not effective
1a

Two high quality RCTs (Fink et al., 2004, Wayne et al., 2005) investigated the effect of acupuncture on motor function in patients with chronic stroke.

This first high quality RCT (Fink et al., 2004) randomized patients to receive acupuncture or placebo acupuncture. Motor function was measured by the Rivermead Motor Assessment at first treatment, post-treatment (4 weeks), and follow-up (3 months). No significant between-group differences were found at any time point.

The second high quality RCT (Wayne et al., 2005) randomized patients to receive acupuncture or sham acupuncture. Motor function was measured by the Fugl-Meyer Assessment at post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than a comparison intervention (placebo/sham acupuncture) in improving motor function in patients with chronic stroke.

Pain
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on pain in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Pain was measured by Visual Analogue Scale at first treatment, post-treatment (4 weeks), and follow-up (3 months). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in improving pain in patients with chronic stroke.

Range of motion - upper extremity
Not effective
1a

Two high quality RCTs (Wayne et al., 2005, Schaechter et al., 2007) investigated the effect of acupuncture on upper extremity range of motion in patients with chronic stroke.

The first high quality RCT (Wayne et al., 2005) randomized patients to receive acupuncture or sham acupuncture. Upper extremity range of motion (shoulder, elbow, forearm, wrist, thumb, digits) was measured at post-treatment (12 weeks). No significant between-group differences were found.

The second high quality RCT (Schaechter et al., 2007) randomized patients to receive acupuncture with electroacupuncture or sham acupuncture with sham electroacupuncture. Upper extremity active assisted range of motion was measured at 2 weeks post-treatment (12 weeks). No significant between-group differences were found.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than comparison interventions (sham acupuncture, sham electroacupuncture) in improving upper extremity range of motion in patients with chronic stroke.

Spasticity - lower extermity
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on lower extremity spasticity in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Ankle spasticity was measured by the Modified Ashworth Scale and the Hoffman’s reflex (Hmax/Mmax ratio of the spastic leg) using the Nicolet Viking II device at first treatment, post-treatment (4 weeks), and follow-up (3 months). Significant between-group differences in spasticity (Hoffman’s reflex) were found at post-treatment, favoring placebo acupuncture vs. acupuncture. These differences were not maintained at follow-up.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in reducing ankle spasticity in patients with chronic stroke. In fact, patients who received acupuncture showed greater spasticity in their affected ankle as compared to those who received placebo acupuncture.

Spasticity - upper extermity
Not effective
1a

Two high quality RCTs (Wayne et al., 2005; Schaechter et al., 2007) and one poor quality crossover RCT (Mukherjee et al., 2007) investigated the effect of acupuncture on upper extremity spasticity in patients with chronic stroke.

The first high quality RCT (Wayne et al., 2005) randomized patients to receive acupuncture or sham acupuncture. Spasticity in the elbow and wrist was measured by the Modified Ashworth Scale at post-treatment (12 weeks). No significant between-group differences were found.

The second high quality RCT (Schaechter et al., 2007) randomized patients to receive acupuncture with electroacupuncture or sham acupuncture with sham electroacupuncture. Upper extremity spasticity was measured by the Modified Ashworth Scale at 2 weeks post-treatment (12 weeks). No significant between-group differences were found.

The poor quality crossover RCT (Mukherjee et al., 2007) randomized patients to receive electroacupuncture or no electroacupuncture; both groups received strengthening exercises. Spasticity of the wrist was measured at post-treatment (6 weeks). Significant between-group differences on one measure of wrist spasticity were found, favoring electroacupuncture vs. no electroacupuncture.
Note: Other measures of spasticity were taken, however between-group analyses were not performed.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than comparison interventions (sham acupuncture, sham electroacupuncture) in reducing upper extremity spasticity in patients with chronic stroke.
Note
: However, a poor quality crossover RCT found a significant difference on one measure of wrist spasticity, in favour of electroacupuncture + strengthening exercises alone vs. strengthening exercises alone.

Walking endurance
Not effective
1b

One high quality RCT (Fink et al., 2004) investigated the effect of acupuncture on walking endurance in patients with chronic stroke. This high quality RCT randomized patients to receive acupuncture or placebo acupuncture. Walking endurance was measured by the 2-Minute Walk Test at first treatment, post-treatment (4 weeks), and follow-up (3 months). No significant between-group differences were found at any time point.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (placebo acupuncture) in improving walking endurance in patients with chronic stroke.

Phase not specific to one period

Balance
Not effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effect of acupuncture on balance in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture or no acupuncture for 2 weeks; both groups received conventional rehabilitation. Balance was measured by the Fugl-Meyer Assessment (FMA – Balance) at discharge from hospital. No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving balance in patients with stroke.

Cognitive function
Effective
1b

One high quality RCT (Jiang et al., 2016) investigated the effect of acupuncture on cognitive function in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture (AC) + conventional rehabilitation (CR), computerized cognitive rehabilitation (COG) + CR, combined AC+COG+CR, or CR alone. Cognitive function was measured by the Mini Mental State Examination and the Montreal Cognitive Assessment (MOCA) at baseline and at post-treatment (12 weeks). Significant between-group differences in change scores from baseline to post-treatment were found on both measures, favoring AC+CR vs. CR alone. There were no significant between-group differences between AC+CR vs. COG+CR.
Note: Significant between-group differences in change scores of both measures were also found in favour of COG+CR vs. CR alone; AC+COG+CR vs. CR alone; AC+COG+CR vs. AC+CR; and AC+COG+CR vs. COG+CR.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is more effective than a comparison intervention (conventional rehabilitation) in improving cognitive function in patients with stroke.
Note:
Combined acupuncture + computerized cognitive training was also found to be more effective than comparison interventions (acupuncture alone, computerized cognitive training alone, conventional rehabilitation) in improving cognitive function in patients with stroke.

Functional independence
Not effective
1a

Five high quality RCTs (Sallstrom et al., 1996 – and a follow-up by Kjendahl et al., 1997 –; Alexander et al., 2004; Schuler et al., 2005; Zhuang et al., 2012; Jiang et al., 2016) and one fair quality RCTs (Hegyi & Szigeti, 2012) investigated the effect of acupuncture on functional independence in patients with stroke.

The first high quality RCT (Sallstrom et al., 1996) randomized patients with acute/subacute stroke to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Functional independence was measured by the Sunnaas Index at post-treatment (6 weeks) and at 1 year post-discharge from hospital (Kjendahl et al., 1997, follow-up study). Significant between-group differences were found at post-treatment and at follow-up, favoring electroacupuncture vs. no acupuncture.

The second high quality RCT (Alexander et al., 2004) randomized patients with acute/subacute stroke to receive acupuncture or no acupuncture for 2 weeks; both groups received conventional rehabilitation. Functional independence was measured by the Functional Independence Measure (FIM) at discharge from hospital. A significant between-group difference was found in only one measure of functional independence (tub/shower transfer), favoring acupuncture vs. no acupuncture.

The third high quality RCT (Schuler et al., 2005) randomized patients with acute/subacute stroke to receive electroacupuncture or placebo acupuncture. Functional independence was measured by the Barthel Index at post-treatment (4 weeks) and at follow-up (6 months). No significant between-group differences were found at either time point.

The forth high quality RCT (Zhuang et al., 2012) randomized patients with acute/subacute stroke to receive acupuncture, conventional rehabilitation or combined acupuncture with conventional rehabilitation. Functional independence was measured by the modified Barthel Index at mid-treatment (2 weeks) and at post-treatment (4 weeks). No significant between-group differences were found at either time point.

The fifth high quality RCT (Jiang et al., 2016) randomized patients with acute/subacute stroke to receive acupuncture (AC) + conventional rehabilitation (CR), computerized cognitive rehabilitation (COG) + CR, combined AC+COG+CR, or CR alone. Functional independence was measured at baseline and at post-treatment (12 weeks) by the FIM. Significant between-group differences were found in FIM change scores from baseline to post-treatment, favoring AC+CR vs. CR alone. There were no significant differences between AC+CR vs. COG+CR.
Note: Significant differences in FIM change scores were also found in favour of COG+CR vs. CR alone; AC+COG+CR vs. CR alone; AC+COG+CR vs. AC+CR; and AC+COG+CR vs. COG+CR.

The fair quality RCT (Hegyi & Szigeti, 2012) randomized patients with acute/subacute stroke to receive acupuncture or no acupuncture for the time of hospitalization (duration not specified); both groups received conventional physical therapy. Functional independence was measured by the Barthel Index at 2 years post-stroke. Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is strong evidence (Level 1a) from three high quality RCTs that acupuncture is not more effective than comparison interventions (no/placebo acupuncture, conventional rehabilitation) in improving functional independence in patients with stroke.
Note:
However, two high quality RCTs and one fair quality RCT found that acupuncture was more effective than a comparison intervention (no acupuncture, conventional rehabilitation alone) in improving functional independence in patients with stroke.

Health-related quality of life (HRQoL)
Effective
1b

One high quality RCT (Sallstrom et al., 1996; and Kjendahl et al., 1997 follow-up study) and one fair quality RCT (Hegyi & Szigeti, 2012) investigated the effect of acupuncture on HRQoL in patients with stroke.

The high quality RCT (Sallstrom et al., 1996) randomized patients with acute/subacute stroke to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. HRQoL was measured by the Nottingham Health Profile (NHP – Part I, Part II) at post-treatment (6 weeks) and at 1 year post-discharge from hospital (Kjendahl et al., 1997 follow-up study). Significant between-group differences were found at post-treatment (NHP Part I: sleep, energy) and at follow-up (NHP Part I: emotion, sleep, physical movement, energy; Part II), favoring electroacupuncture vs. no acupuncture.

The fair quality RCT (Hegyi & Szigeti, 2012) randomized patients with acute/subacute stroke to receive acupuncture or no acupuncture for the time of hospitalization (duration not specified); both groups received conventional physical therapy. HRQoL (general and physical statuses) was measured by Visual Analogue Scale at 2 years post-stroke. A significant between-group difference was found, favoring acupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT and one fair quality RCT that electroacupuncture is more effective than a comparison intervention (no acupuncture) in improving health-related quality of life in patients with stroke.

Insomnia
Effective
1b

One high quality RCT (Kim et al., 2004) investigated the effect of acupuncture on insomnia in patients with stroke. This high quality RCT randomized patients with stroke (stage of recovery not specified) and insomnia to receive intradermal acupuncture or sham acupuncture. Symptoms of insomnia were measured by the Morning Questionnaire (MQ – sleep latency, sleep quality, condition upon awakening, ability to concentrate, ease of falling asleep, morning sleepiness), the Insomnia Severity Index (ISI) and the Athens Insomnia Scale (AIS) at mid-treatment (1 day) and post-treatment (2 days). Significant between-group differences were found at both time points (MQ – sleep quality, condition upon awakening, ability to concentrate, morning sleepiness; ISI; AIS), favoring intradermal acupuncture vs. sham acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is more effective than a comparison intervention (sham acupuncture) in improving symptoms of insomnia in patients with stroke and insomnia.

Joint pain
Not effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effect of acupuncture on joint pain in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Joint pain was measured by the Fugl-Meyer Assessment (FMA – upper and lower extremity joint pain) at discharge from hospital. No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving joint pain in patients with stroke.

Mobility
Effective
2a

One fair quality RCT (Hegyi & Szigeti, 2012) investigated the effect of acupuncture on mobility in patients with stroke. This fair quality RCT randomized patients with acute/subacute stroke to receive acupuncture or no acupuncture for the time of hospitalization (duration not specified); both groups received conventional physical therapy. Mobility was measured by the Rivermead Mobility Index at 2 years post-stroke. Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is limited evidence (Level 2a) from one fair quality RCT that acupuncture is more effective than a comparison intervention (no acupuncture) in improving mobility in patients with stroke.

Motor function
Not effective
1a

Three high quality RCTs (Sallstrom et al., 1996; and Kjendahl et al., 1997 follow-up study), Alexander et al., 2004, Zhuang et al., 2012) investigated the effect of acupuncture on motor function in patients with stroke.

The first high quality RCT (Sallstrom et al., 1996) randomized patients with acute/subacute stroke to receive electroacupuncture or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the Motor Assessment Scale at post-treatment (6 weeks) and at 1 year post-discharge from hospital (Kjendahl et al., 1997 follow-up study). Significant between-group differences were found, at both time points, favoring electroacupuncture vs. no acupuncture.

The second high quality RCT (Alexander et al., 2004) randomized patients with acute/subacute stroketo receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Motor function was measured by the Fugl-Meyer Assessment (FMA-total) at discharge from hospital. No significant between-group differences were found.

The third high quality RCT (Zhuang et al., 2012) randomized patients with acute/subacute stroke to receive acupuncture, conventional rehabilitation or combined acupuncture with conventional rehabilitation. Motor function was measured by the FMA at mid-treatment (2 weeks) and at post-treatment (4 weeks). No significant between-group differences were found at either time point.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than a comparison intervention (no acupuncture, conventional rehabilitation) in improving motor function in patients with stroke.
Note:
However, one high quality RCT found that acupuncture was more effective than a comparison intervention (no acupuncture) in improving motor function in patients with stroke.

Motor function - lower extremity
Effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effect of acupuncture on lower extremity motor function in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Lower extremity motor function was measured by the Fugl-Meyer Assessment (FMA – lower extremity motor function) at discharge from hospital. Significant between-group differences were found, favoring acupuncture vs. no acupuncture.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is more effective than a comparison intervention (no acupuncture) in improving lower extremity motor function in patients with stroke.

Motor function - upper extremity
Not effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effects of acupuncture on upper extremity motor function in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Upper extremity motor function was measured by the Fugl-Meyer Assessment (FMA – Upper extremity motor function) at discharge from hospital. No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving upper extremity motor function in patients with stroke.

Range of motion
Not effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effect of acupuncture on range of motion in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Joint motion was measured by the Fugl-Meyer Assessment (FMA – upper/lower extremity joint motion) at discharge from hospital. No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than no acupuncture in improving upper and lower extremity range of motion in patients with stroke.

Sensation
Not effective
1b

One high quality RCT (Alexander et al., 2004) investigated the effect of acupuncture on sensation in patients with stroke. This high quality RCT randomized patients with acute/subacute stroke to receive acupuncture for 2 weeks or no acupuncture; both groups received conventional rehabilitation. Sensation was measured by the Fugl-Meyer Assessment (FMA – upper/lower extremity sensation) at discharge from hospital. No significant between-group differences were found.

Conclusion: There is moderate evidence (Level 1b) from one high quality RCT that acupuncture is not more effective than a comparison intervention (no acupuncture) in improving sensation in patients with stroke.

Stroke outcomes
Not effective
1a

Two high quality RCTs (Schuler et al., 2005; Zhuang et al., 2012) investigated the effect of acupuncture on stroke outcomes in patients with stroke.

The first high quality RCT (Schuler et al., 2005) randomized patients with acute/subacute stroke to receive electroacupuncture or placebo acupuncture. Stroke outcomes were measured by the European Stroke Scale at post-treatment (4 weeks) and at follow-up (6 months). No significant between-group differences were found at either time point.

The second high quality RCT (Zhuang et al., 2012) randomized patients with acute/subacute stroke to receive acupuncture, conventional rehabilitation or combined acupuncture with conventional rehabilitation. Stroke outcomes were measured by the Neurologic Defect Scale at mid-treatment (2 weeks) and at post-treatment (4 weeks). No significant between-group differences were found at either time point.

Conclusion: There is strong evidence (Level 1a) from two high quality RCTs that acupuncture is not more effective than comparison interventions (placebo acupuncture, conventional rehabilitation) in improving stroke outcomes in patients with stroke.

Swallowing function
Effective
2b

One fair quality RCT (Mao et al., 2016) investigated the effect of acupuncture on swallowing function in patients with stroke. This fair quality RCT randomized patients with acute/subacute stroke and dysphagia to receive acupuncture + standard swallowing training or standard swallowing training alone. Swallowing function was measured by the Video Fluoroscopic Swallowing Study (VFSS), Standardized Swallowing Assessment (SSA) and the Royal Brisbane Hospital Outcome Measure for Swallowing (RBHOMS) at post-treatment (4 weeks). Significant between-group differences were found in two measures of swallowing function (VSFF, SSA), favoring acupuncture + standard swallowing training vs. standard swallowing training alone.

Conclusion: There is limited evidence (Level 2b) from one fair quality RCT that acupuncture with swallowing training is more effective than a comparison intervention (standard swallowing training alone) in improving swallowing function in patients with stroke.

References

Alexander D.N., Cen S., Sullivan K.J., Bhavnani G., Ma X., & Azen S.P. (2004). Effects of acupuncture treatment on poststroke motor recovery and physical function: a pilot study. Neurorehabilitation and Neural Repair, 18(4), 259-267.
https://www.ncbi.nlm.nih.gov/pubmed/15537996

Chen, L., Fang, J., Ma, R., Gu, X., Chen, L., Li, J., & Xu, S. (2016). Additional effects of acupuncture on early comprehensive rehabilitation in patients with mild to moderate acute ischemic stroke: a multicenter randomized controlled trial. BMC complementary and alternative medicine16(1), 226.
https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-016-1193-y

Fink M., Rollnik J. D., Bijak M., Borstadt C., Dauper J., Guergueltcheva V., Dengler, Reinhard D., & Karst M. (2004). Needle acupuncture in chronic poststroke leg spasticity. Archives of Physical Medicine and Rehabilitation, 85(4), 667-672.
http://www.archives-pmr.org/article/S0003-9993(03)00941-9/abstract

Gosman – Hedstrom G., Claesson L., Klingenstierna U., Carlsson J., Olausson B., Frizell M., Fagerberg B., & Blomstrand C. (1998). Effects of acupuncture treatment on daily life activities and quality of life: a controlled, prospective, and randomized study of acute stroke patients. Stroke, 29, 2100-2108.
https://www.ncbi.nlm.nih.gov/pubmed/9756589

Hegyi, G., & Szigeti, G. P. (2012). Rehabilitation of stroke patients using yamamoto new scalp acupuncture: a pilot study. The Journal of Alternative and Complementary Medicine18(10), 971-977.
http://online.liebertpub.com/doi/abs/10.1089/acm.2011.0047

Hopwood V, Lewith G., Prescott P., & Campbell M.J. (2008). Evaluating the efficacy of acupuncture in defined aspects of stroke recovery: A randomized, placebo controlled single blind study, Journal of Neurology, 255, 858-866.
https://www.ncbi.nlm.nih.gov/pubmed/18465110

Hsieh R.L., Wang L.Y., & Lee W.C. (2007). Additional therapeutic effects of electro-acupuncture in conjunction with conventional rehabilitation for patients with first-ever ischaemic stroke. Journal of Rehabilitation Medicine, 39, 205-211.
https://www.medicaljournals.se/jrm/content/html/10.2340/16501977-0032

Hu H.H., Chung C., Li T.J., Chen R.C., Chen C.H., Chou P., Huang W.S., Lin J.C.T., & Tsuei J.J. (1993). A randomized controlled trial on the treatment for acute partial ischemic stroke with acupuncture. Neuroepidemiology, 12, 106-113.
https://www.ncbi.nlm.nih.gov/pubmed/8232703

Jiang, C., Yang, S., Tao, J., Huang, J., Li, Y., Ye, H., … & Chen, L. (2016). Clinical efficacy of acupuncture treatment in combination with rehacom cognitive training for improving cognitive function in stroke: a 2× 2 factorial design randomized controlled trial. Journal of the American Medical Directors Association17(12), 1114-1122.
http://www.sciencedirect.com/science/article/pii/S1525861016302997

Johansson K., Lindgren I., Widner H., Wiklund I., & Johansson B.B. (1993). Can sensory stimulation improve the functional outcome in stroke patients? Neurology, 43, 2189-2192.
https://www.ncbi.nlm.nih.gov/pubmed/8232927

Johansson B.B., Haker E., von Arbin M., Britton M., Langstrom G., Teréent A, Ursing D., & Asplund K. (2001). Acupuncture and transcutaneous nerve stimulation in stroke rehabilitation: a randomized, controlled trial. Stroke, 32, 707-713.
http://stroke.ahajournals.org/content/strokeaha/32/3/707.full.pdf

Kim Y.S., Lee S.H., Jung W.S., Park S.U., Moon S.K., Ko C.N., Cho K.H., Bae H.S. (2004). Intradermal acupuncture on shen-men and nei-kuan acupoints in patients with insomnia after stroke. American Journal of Chinese Medicine, 32, 771-778.
https://www.ncbi.nlm.nih.gov/pubmed/15633811

Kjendahl A., Sallstrom S., Egil Osten P., & Kvalvik Stanghelle J. (1997). A one year follow-up study on the effects of acupuncture in the treatment of stroke patients in the subacute stage: a randomized, controlled study. Clinical Rehabilitation, 11, 192-200.
https://www.ncbi.nlm.nih.gov/pubmed/9360031

Li, H., Liu, H., Liu, C., Shi, G., Zhou, W., Zhao, C., … & Sun, J. (2014). Effect of “Deqi” during the study of needling “Wang’s Jiaji” acupoints treating spasticity after strokeEvidence-Based Complementary and Alternative Medicine2014.
https://www.hindawi.com/journals/ecam/2014/715351/abs/

Liu, C. H., Hsieh, Y. T., Tseng, H. P., Lin, H. C., Lin, C. L., Wu, T. Y., … & Zhang, H. (2016). Acupuncture for a first episode of acute ischaemic stroke: an observer-blinded randomised controlled pilot study. Acupuncture in Medicine34(5), 349-355.
http://aim.bmj.com/content/34/5/349

Mao, L. Y., Li, L. L., Mao, Z. N., Han, Y. P., Zhang, X. L., Yao, J. X., & Li, M. (2016). Therapeutic effect of acupuncture combining standard swallowing training for post-stroke dysphagia: A prospective cohort study. Chinese Journal of Integrative Medicine22(7), 525-531.
https://link.springer.com/article/10.1007/s11655-016-2457-6

Min, M., Xin, C., Yuefeng, C., Ping, R., & Jian, L. (2008). Stage-oriented comprehensive acupuncture treatment plus rehabilitation training for apoplectic hemiplegiaJournal of Traditional Chinese Medicine28(2), 90-93.
http://www.sciencedirect.com/science/article/pii/S0254627208600229

Mukherjee M., McPeak L.K., Redford J. B., Sun C., & Liu W. (2007). The effect of electro-acupuncture on spasticity of the wrist joint in chronic stroke survivors. Archives of Physical Medicine and Rehabilitation, 88, 159-166.
https://www.ncbi.nlm.nih.gov/pubmed/17270512

Naeser M.A., Alexander M.P., Stiassny-Eder D., Galler V., Hobbs J., & Bachman D. (1992). Real versus sham acupuncture in the treatment of paralysis in acute stroke patients: a CT scan lesion site study. Journal of Neuroengineering and Rehabilitation 6(4), 163-173.
http://www.bu.edu/naeser/acupuncture/publications/Naeser_RealvsSham_1992.pdf

Park J., White A.R., James M.A., Hemsley A.G., Johnson P., Chambers J., & Ernst E. (2005). Acupuncture for subacute stroke rehabilitation. A sham-controlled, subject and assessor-blind, randomized trial. Archives of Internal Medicine, 165, 2026-2031.
https://www.ncbi.nlm.nih.gov/pubmed/16186474

Pei, J., Sun, L., Chen, R., Zhu, T., Qian, Y., & Yuan, D. (2001). The effect of electro-acupuncture on motor function recovery in patients with acute cerebral infarction: a randomly controlled trial. Journal of Traditional Chinese Medicine21(4), 270-272.
http://europepmc.org/abstract/med/12014128

Rorsman I. & Johansson B. (2006). Can electro-acupuncture or transcutaneous nerve stimulation influence cognitive and emotional outcome after stroke? Journal of Rehabilitation Medicine, 38, 13-19.
https://www.ncbi.nlm.nih.gov/pubmed/16548081

Sallstrom S., Kjendahl A., Osten P.E., Stanghelle J.H., & Borchgrevink C.F. (1996). Acupuncture in the treatment of stroke patients in the subacute stage: a randomized, controlled study. Complementary Therapies in Medicine, 4, 193-197.
http://www.sciencedirect.com/science/article/pii/S0965229996800094

Schaechter J.D., Connell B.D., Stason W.B., Kaptchuk T.J., Krebs D.E., Macklin E.A., Schnyer R.N., Stein J., Scarborough D.M., Parker S.W., McGibbon C.A., & Wayne P.M. (2007). Correlated change in upper limb function and motor cortex activation after verum and sham acupuncture in patients with chronic stroke. Journal of Alternative and Complementary Medicine. 13, 527-532.
https://www.ncbi.nlm.nih.gov/pubmed/17604556

Schuler M.S., Durdak C., Hosl N.M., Klink A., Hauer K.A., & Oster P. (2005). Acupuncture treatment of geriatric patients with ischemic stroke: a randomized, double-controlled, single-blind study. Journal of the American Geriatrics Society, 53, 549-550.
https://www.ncbi.nlm.nih.gov/pubmed/15743311

Si Q.C., Wu G.C., & Cao X.D. (1998). Effects of electroacupuncture on acute cerebral infarction. Acupuncture and Electro-therapeutics Research, 23, 117-124.
https://www.ncbi.nlm.nih.gov/pubmed/9789586

Sze F.K., Wong E., Yi X., & Woo J. (2002). Does acupuncture have additional value to standard poststroke motor rehabilitation? Stroke, 33, 186-194.
https://www.ncbi.nlm.nih.gov/pubmed/11779909

Tan, F., Wang, X., Li, H. Q., Lu, L., Li, M., Li, J. H., … & Zheng, G. Q. (2013). A randomized controlled pilot study of the triple stimulation technique in the assessment of electroacupuncture for motor function recovery in patients with acute ischemic strokeEvidence-Based Complementary and Alternative Medicine2013.
https://www.hindawi.com/journals/ecam/2013/431986/abs/

Wang, C., Wu, Z., Li, N., Zhao, Y., Tian, F., Zhou, X., & Wang, Z. (2014). Clinical curative effect of electric acupuncture on acute cerebral infarction: a randomized controlled multicenter trial. Journal of Traditional Chinese Medicine34(6), 635-640.
http://www.sciencedirect.com/science/article/pii/S0254627215300753

Wayne P. M., Krebs D. E., Macklin E. A., Schnyer R., Kaptchuk T. J., Parker S. W., Scarborough D.M., McGibbon C.A., Schaechter J.D., Stein J., & Stason W.B. (2005). Acupuncture for upper-extremity rehabilitation in chronic stroke: a randomized sham-controlled study. Archive of Physical Medicine Rehabilitation, 86, 2248-2255.
https://www.ncbi.nlm.nih.gov/pubmed/16344019

Wong A.M., Su T.Y., Tang F.T., Cheng P.T., & Liaw M.Y. (1999). Clinical trial of electrical acupuncture on hemiplegic stroke patients. American Journal of Physical Medicine and Rehabilitation, 78, 117-122.
https://www.ncbi.nlm.nih.gov/pubmed/10088585

Xia, W., Zheng, C., Zhu, S., & Tang, Z. (2016). Does the addition of specific acupuncture to standard swallowing training improve outcomes in patients with dysphagia after stroke? a randomized controlled trial. Clinical Rehabilitation30(3), 237-246.
http://journals.sagepub.com/doi/abs/10.1177/0269215515578698

Zhang, S., Wu, B., Liu, M., Li, N., Zeng, X., Liu, H., … & Wang, D. (2015). Acupuncture Efficacy on Ischemic Stroke Recovery. Stroke46(5), 1301-1306.
http://stroke.ahajournals.org/content/46/5/1301.short

Zhu, Y., Zhang, L., Ouyang, G., Meng, D., Qian, K., Ma, J., & Wang, T. (2013). Acupuncture in subacute stroke: no benefits detected. Physical Therapy93(11), 1447-1455.
https://academic.oup.com/ptj/article/93/11/1447/2735273/Acupuncture-in-Subacute-Stroke-No-Benefits

Zhuang, L. X., Xu, S. F., D’Adamo, C. R., Jia, C., He, J., Han, D. X., & Lao, L. X. (2012). An Effectiveness Study Comparing Acupuncture, Physiotherapy, and Their Combination in Poststroke Rehabifitation: A Multicentered, Randomized, Controlled Clinical Trial. Alternative Therapies in Health & Medicine18(3).
https://www.ncbi.nlm.nih.gov/pubmed/22875557

Help us to improve