Motor Activity Log (MAL)

Overview

A literature search was conducted to identify all relevant publications on the psychometric properties of the MAL. Twenty-six studies were identified, most of which included patients in the chronic phase of stroke recovery. This review includes different versions of the MAL – the original MAL-30, MAL-28, MAL-14, MAL-45, LF-MAL, Grade 4/5 MAL and Turkish, Brazilian and German versions.

Floor/Ceiling Effects

Chuang et al. (2017) examined floor/ceiling effects of the 30-item MAL in a sample of 403 patients with chronic stroke. The MAL was administered to patients with motor recovery of the proximal and distal upper limb at Brunnstrom stage III and higher. Results showed modest floor effects within this cohort, whereby 17.3% of participants received minimum scores on the MAL.

Chuang et al. (2017) examined floor/ceiling effects of the LF-MAL in a sample of 134 patients with chronic stroke. The LF-MAL was administered to patients with motor recovery of the proximal and distal upper limb at Brunnstrom stage III and lower. Results showed modest floor effects within this cohort, whereby 16.4% of participants received minimum scores on the LF-MAL.

Reliability

Internal consistency:
van der Lee et al. (2004) examined internal consistency of the MAL-14 in a sample of 56 patients with chronic stroke, using Cronbach’s alpha. Correlation among items was excellent for the MAL-AOU (a = 0.87) and the MAL-QOM (a = 0.90). Limits of agreement ranged from -0.70 to 0.85 for the MAL-AOU and from -0.61 to 0.71 for the MAL-QOM, indicating reproducibility sufficient to detect an individual change of approximately 12-15% of the range of the scale.

Uswatte et al. (2005b) examined internal consistency of the MAL-14 in a sample of 41 patients with chronic stroke and their caregivers, using Cronbach’s alpha. Correlation among items was excellent for patients’ MAL-QOM (a = 0.87) and caregivers’ MAL-AOU and MAL-QOM (a > 0.83). The authors also examined internal consistency of the MAL-14 (QOM scale only) in a sample of 27 patients with chronic stroke. Correlation among items was excellent for the MAL-QOM (a = 0.81).

Uswatte et al. (2006b) examined internal consistency of the MAL-28 in a sample of 222 patients with subacute/chronic stroke and their caregivers, using Cronbach’s alpha. Responses from both patient and caregiver groups showed excellent correlation among items for the MAL-AOU (patients a = 0.94; caregivers a = 0.95) and the MAL-QOM (patients a = 0.94; caregivers a = 0.95).

Huseyinsinoglu et al. (2011) examined internal consistency of the MAL-28 (Turkish version) in a sample of 30 patients with stroke, using Cronbach’s alpha. Internal consistency was excellent for the MAL-AOU (a = 0.96) and MAL-QOM (a = 0.96).

Khan et al. (2013) examined internal consistency of the MAL-30 (German version) in a sample of 42 patients with acute to chronic stroke, using Cronbach’s alpha. Measures were taken at baseline, discharge from rehabilitation and at 6-month follow-up. Internal consistency for the MAL-AOU and MAL-QOM were excellent at all timepoints (a = 0.98-0.995). The authors also calculated internal consistency based on an elimination procedure of items that scored “N/A” down to 26 items and reported that internal consistency remained high at all timepoints (a = 0.94-0.98).

Taub et al. (2013) reported on internal consistency of the Grade 4/5 MAL, referencing unpublished data from Morris (2009) that used a sample of 30 individuals with stroke, using Cronbach’s alpha. Internal consistency for the Grade 4/5 MAL was excellent (a = 0.95).

Chuang et al. (2017) examined the 6-point rating system of the MAL and found rater difficulty discriminating among the 6 levels of functional ability. Results showed that 15 items of the MAL-AOU and MAL-QOM displayed disordering of step difficulty. Accordingly, the 6 levels were collapsed into 4 levels to restore reversed threshold (0 = 0; 1-2 = 1; 3-4 = 2; 5 = 3); using the 4-point system 9 items still showed disordered ordering, so the levels were further collapsed into 2 categories (0 = 0; 1 to 3 = 1), at which point all items exhibited ordering. The authors examined unidimensionality of the 30-item MAL in a sample of 403 patients with chronic stroke, using the revised scoring system. Item fit analysis of the MAL revealed that 7 items* of the MAL-AOU and MAL-QOM were a poor fit and were removed. Principal component analysis (PCA) of the remaining 23 items showed that Rasch measures accounted for 76% of the variance for both the MAL-AOU and MAL-QOM, with an eigenvalue of the first residual factor of 2.7. This indicates that the 23 items constitute unidimensional constructs. The authors examined reliability of the revised MAL (23 items, 4-point rating system), using Rasch analysis. With Pearson separation values of 2.4 and 2.6 for the MAL-AOU and MAL-QOM respectively, the revised version was sensitive to distinguish among 3 strata of upper limb performance. Pearson reliability coefficients were 0.85 and 0.87 (respectively), suggesting good reliability. Results showed no Differential Item Functioning (DIF) items across age, gender or hand dominance. Item difficulty hierarchy was consistent with clinical expectation, however items were more difficult than individuals’ ability, suggesting unsuitable targeting for the participants of this sample.
* Misfit items: (6) Get out of car; (12) Dry your hands; (18) Pull a chair away from the table before sitting down; (19) Pull chair toward table after sitting down; (21) Brush your teeth; (24) Write on paper; (29) Button a shirt.

Chuang et al. (2017) examined the 6-point rating system of the LF-MAL and found disordered thresholds; accordingly, the 6 levels were collapsed into 3 levels to restore reversed threshold (0 = 0; 1-3 = 1; 4-5 = 2); this 3-point rating system achieved step ordering. The authors examined unidimensionality of the LF-MAL in a sample of 134 patients with chronic stroke, using the revised 3-point scoring system. Item fit analysis of the LF-MAL-AOU revealed that 6 items were out of the acceptable range; PCA of the remaining 24 items showed that the Rasch dimension explained 70.5% of the variance, with an eigenvalue of 2.6 of the first residual factor. Item fit analysis of the LF-MAL-QOM revealed that 7 items were out of the acceptable range; PCA of the remaining 23 items showed that the Rasch dimension explained 71.0% of the variance, with an eigenvalue of the first residual factor of 2.5. The authors examined reliability of the revised LF-MAL (25 items, 3-point rating system), using Rasch analysis. With Pearson separation values of 1.9 for both the LF-MAL-AOU and LF-MAL-QOM, the revised version was sensitive to distinguish 2 strata of upper limb performance. Pearson reliability coefficients were 0.79 for both the LF-MAL-AOU and LF-MAL-QOM, indicating acceptable reliability. Results showed no DIF items across age, gender or hand dominance. Item difficulty hierarchy was consistent with clinical expectation, however items were more difficult than individuals’ ability, suggesting unsuitable targeting for the participants of this sample.
* Misfit items: (5) Wipe off a kitchen counter or another surface; (6) Get out of a car; (7) Open a refrigerator; (19) Apply soap to your body while bathing (LF-MAL-QOM only); (21) Brush your teeth; (23) Steady yourself while standing; (24) Carry an object in your hand.

Moreira Silva et al. (2018) examined internal consistency of the MAL-30 in a sample of 66 individuals with chronic stroke, using Cronbach’s alpha. Participants were classified according to upper extremity motor function using the Fugl-Meyer Assessment – Upper Extremity (FMA-UE): mild to moderate hemiparesis (FMA-UE ≥ 32, n = 49) or severe hemiparesis (FMA-UE ≤31, n = 17). Internal consistency of the MAL-AOU and MAL-QOM was excellent among participants with mild-moderate hemiparesis (a = 0.95), and adequate to excellent among participants with severe hemiparesis (MAL-AOU: a = 0.79; MAL-QOM: a = 0.89). Rasch analysis was used to further evaluate reliability of the MAL-30. Item calibration of the MAL-AOU and MAL-QOM revealed one misfit (#19: Pull a chair toward table after sitting down). Item separation index of the MAL-AOU and MAL-QOM was 2.92 and 2.59 (respectively) suggesting 5 levels of difficulty for the MAL-AOU and 4 levels of difficulty for the MAL-QOM. Pearson separation index of the MAL-AOU and MAL-QOM was 2.62 and 2.58 (respectively), suggesting 4 ability levels for both the MAL-AOU and the MAL-QOM.

Test-retest:
Miltner et al. (1999) examined test-retest reliability of the MAL in a sample of 15 patients with chronic stroke. Measures were taken within a 2-week interval before participants began constraint-induced movement therapy. Test-retest reliability was excellent (r = 0.98).

Johnson et al. (2003) examined test-retest reliability of the MAL-45 in a sample of 12 patients with chronic stroke, using Pearson’s correlation coefficient. Measures were taken within a 3-week interval. Test-retest reliability was excellent for the MAL-AOU (r=0.96) and MAL-QOM (r = 0.99).

van der Lee et al. (2004) examined test-retest reliability of the MAL-14 in a sample of 56 patients with chronic stroke, using the Bland and Altman method. Measures were taken within a 2-week interval before participants commenced an intervention program. Test-retest reliability was excellent for the for MAL-AOU (r = 0.70 to 0.85) and the MAL-QOM (r = 0.61 to 0.71).

Uswatte et al. (2005b) examined test-retest reliability of the MAL-14 in a sample of 41 patients with chronic stroke and their caregivers, using Pearson correlation coefficients. Test-retest reliability was excellent for patient MAL-QOM scores (r = 0.91), and adequate for patient MAL-AOU scores (r = 0.44), and caregiver MAL-AOU and MAL-QOM scores (r = 0.61, r = 0.50 respectively).

Uswatte et al. (2006b) examined 2-week test-retest reliability of the MAL-30 in a sample of 116 patients with subacute/chronic stroke and their caregivers, using Intra Class Coefficients (ICC). Test-retest reliability for the MAL-AOU and MAL-QOM was excellent among patients (ICC = 0.79, ICC = 0.82, respectively), and adequate among caregivers (ICC = 0.66, ICC = 0.72, respectively). There was a trend toward an increase from test 1 to test 2 among both patients and caregivers (patient MAL-AOU: 0.3 ± 0.6, p = 0.04; patient MAL-QOM: 0.3 ± 0.5, p = 0.02; caregiver MAL-AOU: 0.4 ± 0.7, p = 0.05; caregiver MAL-QOM: 0.4 ± 0.7, p = 0.02), although increases were less than the minimal clinically important difference (< 0.5 points).

Huseyinsinoglu et al. (2011) examined 3-day test-retest reliability of the MAL-28 (Turkish version) in a sample of 30 patients with stroke, using intraclass coefficients (ICC) and Spearman correlation coefficients. Test-retest reliability was excellent for the MAL-AOU (ICC = 0.97, r = 0.94) and the MAL-QOM (ICC = 0.96, r = 0.93).

Saliba et al. (2011) examined test-retest reliability of the MAL (Brazilian version), using intra-class correlation coefficients (ICC). Test-retest reliability for the MAL-AOU and MAL-QOM was excellent (ICC = 0.98).

Taub et al. (2013) reported on test-retest reliability of the Grade 4/5 MAL, referencing unpublished data from Morris (2009) that used a sample of 10 individuals with stroke. Test-retest reliability for the Grade 4/5 MAL was excellent (r = 0.95).

Intra-rater:
No studies have reported on the intra-rater reliability of the MAL.

Inter-rater:
Uswatte et al. (2005b) examined inter-rater reliability of the MAL-14 in a sample of 41 patients with chronic stroke and their caregivers using Intra Class Coefficients (ICC). Participants received Constraint-Induced Movement Therapy (CIMT) or time-matched general fitness rehabilitation for two weeks. Reliability between patient and carer pre-treatment scores was adequate (ICC = 0.52, p < 0.01); reliability between patient and carer change scores following treatment was adequate (ICC = 0.7, p < 0.0001).

Validity

Content:
No studies have reported on content validity of the MAL.

Criterion :
Concurrent:
Johnson et al. (2003) examined concurrent validity of the MAL-45 in a sample of 12 patients with chronic stroke by comparison with the Abilhand, using Pearson correlation coefficients. Correlations with the Abilhand were excellent for the MAL-AOU (r = 0.71, p < 0.05) and MAL-QOM (r = 0.88, p < 0.05).

Uswatte et al. (2005b) examined concurrent validity of the MAL-14 (QOM scale only) in a sample of 27 patients with chronic stroke by comparison with accelerometry of the affected arm, using Pearson correlation coefficients. Correlations between the MAL-QOM and accelerometer recordings at pre-treatment (r = 0.70, p < 0.05) were excellent. Correlations between MAL-QOM change scores from pre-treatment to post-treatment and corresponding change scores on accelerometer readings were also excellent (r = 0.91, p < 0.01).

Lin et al. (2010a) examined concurrent validity of the MAL-30 by comparison with the Nine Hole Peg Test (9HPT), the Box and Block Test (BBT) and the Action Research Arm Test (ARAT), using Spearman rank correlation coefficients. Patients with chronic stroke (n=59) were randomized to receive distributed constraint-induced movement therapy, bilateral arm training or neurodevelopmental therapy, and measures were taken at baseline and post-treatment (3 weeks). Correlations at baseline and post-treatment were significant and adequate with the BBT (MAL-AOU: r = 0.37, r = 0.49; MAL-QOM: r = 0.52, r = 0.52) and the ARAT (MAL-AOU: r = 0.31, r = 0.32; MAL-QOM: r = 0.39, r = 0.35). Correlations with the 9HPT were significant for the MAL-QOM only (r = -0.26, r = -0.33).

Lin et al. (2010b) examined concurrent validity of the MAL-30 by comparison with the Stroke Impact Scale 3.0 (SIS) and the Stroke-Specific Quality of Life Scale (SS-QOL), using Spearman rank correlation coefficients. Patients with chronic stroke (n = 74) were randomized to receive distributed constraint-induced movement therapy, bilateral arm training or neurodevelopmental therapy, and measures were taken at baseline and post-treatment (3 weeks). There were significant poor to adequate correlations between the MAL-AOU and most SIS domains at baseline (r = 0.24-0.58) and post-treatment (r = 0.24-0.59). There were significant excellent correlations between the MAL-QOM and the SIS – Hand function domain at baseline (r = 0.65) and post-treatment (r = 0.68), and significant poor to adequate correlations between the MAL-QOM and most other SIS domains at baseline (r = 0.26-0.52) and post-treatment (r = 0.28-0.51). There were significant correlations between the MAL-AOU and some SS-QOL domains at baseline (r = 0.25-0.37) and post-treatment (r = 0.24-0.35), and between the MAL-QOM and some SS-QOL domains at baseline (r = 0.28-0.38) and post-treatment (r = 0.26-0.39).

Wu et al. (2011) examined concurrent validity of the MAL-30 in a sample of 77 patients with chronic stroke by comparison with a modified version of the Nottingham Extended ADL Scale (NEADL) and the Frenchay Activities Index (FAI), using Spearman rank correlation coefficients. Measures were taken at pre-treatment and 3 weeks later at post-treatment. Correlations with the NEADL were poor to adequate (MAL-AOU: r = 0.3; MAL-QOM: r = 0.2-0.3). Correlations with the FAI were adequate (MAL-AOU: r = 0.3-0.4); MAL-QOM: r = 0.3).

Khan et al. (2013) examined cross-sectional concurrent validity of the MAL-30 (German version) by comparison with the Wolf Motor Function Test (WMFT) – Time and Functional ability subtests, the Chedoke McMaster Stroke Assessment (CMSA) – Arm and Hand subtests, the grip strength scale, and isometric strength measured by handheld dynamometer (mean of shoulder and elbow flexion and extension), using Spearman’s rank correlation coefficients. Patients with acute to chronic stroke (n = 42) received inpatient rehabilitation and measures were taken at baseline; discharge from hospital and at 6-month follow-up. Significant negative correlations were seen with the WMFT – Time scores (MAL-AOU r = -0.747 – -0.878; MAL-QOM r = -0.770 – -0.901). Correlations were excellent at all time points with the WMFT – Functional ability (MAL-AOU r = 0.769 – 0.808, MAL-QOM r = 0.789 – 0.837), the CSMA – Arm (MAL-AOU r = 0.680 – 0.765; MAL-QOM r = 0.691 – 0.798) and CSMA – Hand (MAL-AOU r = 0.692 – 0.801; MAL-QOM r = 0.717 – 0.803), grip strength (MAL-AOU r = 0.698 – 0.716; MAL-QOM r = 0.659-.0733) and isometric strength (MAL-AOU r = 0.643-0.719; MAL-QOM r = 0.714-0.726).

Predictive:
No studies have examined predictive validity of the MAL.

Construct:
Uswatte et al. (2006b) conducted item analysis of the original MAL-30 using item-total correlations, reliability and proportion of missing data (with an a priori cut-off of 20%) in a sample of 222 patients with subacute/chronic stroke and their caregivers. Of the 30 items, 25 items were completed by > 80% of caregivers and 28 items were completed by > 80% of patients; analysis of these 28 items indicated item-total correlations > 0.5 for 92% of items, and reliability coefficients > 0.5 for 89% of items. The remaining 2 items (write on paper: 48% missing data; put makeup/shaving cream on face: 20% missing data) showed lower item-total correlations and reliability coefficients and were dropped accordingly.

van der Lee et al. (2004) examined construct validity of the MAL-14 in a sample of 56 patients with chronic stroke, using Spearman’s correlation coefficient. There was an excellent correlation between the MAL-AOU and MAL-QOM (r = 0.95, p < 0.001).

Uswatte et al. (2005b) examined construct validity of the MAL-14 (QOM scale only) in a sample of 27 patients with chronic stroke by comparison with patient/caregiver MAL-AOU scores, using Pearson correlation coefficients. Correlations were excellent between MAL-QOM change scores from pre-treatment to post-treatment and corresponding change scores in patient MAL-AOU (r = 0.80, p < 0.01), carer MAL-AOU (r = 0.73, p < 0.01) and carer MAL-QOM (r = 0.70, p < 0.01).

Uswatte et al. (2006a) examined construct validity of the MAL-30 in a sample of 169 individuals with subacute/chronic stroke, using Pearson correlation coefficient. There was an excellent correlation between the MAL-AOU and MAL-QOM (r = 0.92, p < 0.001).

Huseyinsinoglu et al. (2011) examined construct validity of the MAL-28 (Turkish version) in a sample of 30 patients with stroke, using Spearman’s correlation coefficient. The correlation between the MAL-AOU and the MAL-QOM was excellent (r = 0.95).

Saliba et al. (2011) examined construct validity of the MAL (Brazilian version) in a sample of 77 individuals with chronic stroke, using Rasch analysis. There was an excellent correlation between the MAL-AOU and the MAL-QOM (r = 0.97, p < 0.0001).

Khan et al. (2013) examined construct validity of the MAL-30 (German version), using Spearman’s rank correlation coefficients. Patients with acute to chronic stroke (n = 42) received inpatient rehabilitation and measures were taken at baseline, discharge from hospital and at 6-month follow-up. There was an excellent correlation between the MAL-AOU and MAL-QOM at all timepoints (r = 0.994, 0.982, 0.980).

Chuang et al. (2017) examined construct validity of the MAL-30 in a sample of 403 patients with chronic stroke with motor recovery of the proximal and distal upper limb at Brunnstrom stage III and higher, using Rasch analysis. Correlation between the MAL-AOU and MAL-QOM was adequate (r = 0.603), indicating that the subscales are not highly correlated and can be perceived as different concepts.

Chuang et al. (2017) examined construct validity of the LF-MAL in a sample of 134 patients with chronic stroke with motor recovery of the proximal and distal upper limb at Brunnstrom stage III and lower, using Rasch analysis. Correlation between the LF-MAL-AOU and LF-MAL-QOM was adequate (r = 0.607), indicating that the subscales are not highly correlated and can be perceived as different concepts.

Convergent/Discriminant :
van der Lee et al. (2004) examined cross-sectional convergent validity of the MAL-14 by comparison with the Action Research Arm Test (ARAT) in a sample of 56 patients with chronic stroke, using Spearman’s correlation coefficient. There were excellent correlations between the MAL-AOU and the ARAT (r = 0.63, p < 0.001) and between the MAL-QOM and the ARAT (r = 0.63, p < 0.001).

Uswatte et al. (2005a) examined convergent validity of the MAL-14 in a sample of 20 patients with chronic stroke by comparison with accelerometry of the affected arm, using Spearman rank correlations. There was an excellent correlation between the MAL-14 and accelerometry (r = 0.74, p < 0.001).

Uswatte et al. (2006a) examined convergent validity of the MAL-30 (QOM scale only) in a sample of 169 patients with subacute/chronic stroke by comparison with accelerometry of the affected arm and the Actual Amount of Use Test (AAUT), using Pearson correlation coefficients. Correlations between the MAL-QOM and accelerometry ratios (ratio summary variable, impaired arm summary variable) were adequate (r = 0.52, r = 0.41 respectively, p < 0.001). The correlation between the MAL-QOM and AAUT was excellent (r = 0.94, p < 0.001).

Uswatte et al. (2006b) examined convergent validity of the MAL-30 in a sample of 222 patients with subacute/chronic stroke and their caregivers by comparison with accelerometry of the affected arm, and the SIS 2.0 – Hand function scale, using Pearson correlation coefficients. Comparison of the MAL with accelerometry ratios showed adequate to excellent correlations for patient scores (MAL-AOU: r = 0.47; MAL-QOM: r = 0.52, p < 0.01), and adequate correlations for caregiver scores (MAL-AOU: r = 0.57; MAL-QOM, r = 0.61, p < 0.01). Comparison of the MAL and SIS – Hand function scores showed excellent correlations for patient scores (MAL-AOU: r = 0.68; MAL-QOM: r = 0.72, p < 0.01), and adequate correlations for caregiver scores (MAL-AOU: r = 0.35, MAL-QOM: r = 0.40, p < 0.01).

Uswatte et al. (2006b) examined divergent validity of the MAL-30 in a sample of 222 patients with subacute/chronic stroke and their caregivers by comparison with accelerometry of the less affected arm, and the SIS 2.0 – Mobility scale, using Pearson correlation coefficients. Comparison of the MAL with accelerometry ratios of the less affected arm showed poor correlations for patient scores (MAL-AOU: r = 0.14; MAL-QOM: r = 0.14, p > 0.05), and poor to adequate correlations for caregiver scores (MAL-AOU: r = 0.25; MAL-QOM, r = 0.23, p < 0.001). Comparison of the MAL and SIS – Mobility scores showed poor correlations for patient scores (MAL-AOU: r = 0.14; MAL-QOM: r = 0.14, p > 0.05), and poor correlations for caregiver scores (MAL-AOU: r = 0.10, MAL-QOM: r = 0.07, p > 0.05).

Hammer and Lindmark (2010) examined cross-sectional convergent validity of the MAL-30 by comparison with the FMA-UE, ARAT, Motor Assessment Scale – Upper Extremity score (MAS-UE), 16-hole peg test (16HPT) and the Grippit ratio of isometric grip strength, using Spearman’s correlation coefficient. Patients with subacute stroke (n = 30) were randomized to receive forced use therapy or standard upper limb rehabilitation, and measures were taken at baseline, post-treatment (2 weeks) and follow-up (3 months). Correlations were significant and adequate with all measures: FMA-UE (r = 0.43-0.52); ARAT (r = 0.31-0.51); MAS-UE (r = 0.41-0.54); 16HPT (r = -0.41 – -0.67); Grippit (r = 0.41-0.53).

Huseyinsinoglu et al. (2011) examined convergent validity of the MAL-28 (Turkish version) by comparison with the WMFT – Performance Time (WMFT-PT) and – Functional Ability (WMFT-FA) scores in a sample of 30 patients with stroke. There were excellent correlations with the WMFT-FA (MAL-AOU, r=0.63; MAL-QOM: r = 0.63), and adequate negative correlations with the WMFT-PT (MAL-AOU: r = -0.56; MAL-QOM: r = -0.55).

Saliba et al. (2011) examined convergent validity of the MAL (Brazilian version) by comparison with grip strength of the more severely affected upper limb in a sample of 77 individuals with chronic stroke, using Rasch analysis. There were adequate correlations between grip strength and the MAL-AOU (r = 0.51, p < 0.0001) and the MAL-QOM (r =0 .57, p < 0.0001).

Sterr et al. (2014) examined divergent validity of the MAL in a sample of 65 patients with chronic stroke by comparison with the Short Form 36 (SF-36), Stroke Impact Scale (SIS), Hospital Anxiety and Depression Scale (HADS) and Visual Analog Mood Score (VAMS), using regression analysis. Participants received four different Constraint-Induced Movement Therapy (CIMT) treatment protocols that differed in intensity and use of a constraint. Following treatment there was a significant positive association between the MAL-AOU and the SF-36 Physical domain (r = 0.38m p = 0.025) and a trend towards a moderate association with the SIS Total score (r = 0.43, p = 0.061).

Shindo et al. (2015) examined convergent validity of the MAL-14 in a sample of 34 patients with acute/subacute stroke by comparison with the Simple Test for Evaluating Hand Function (STEF), using Spearman’s correlation coefficient. There was a significant and excellent correlation between the assessments (MAL-AOU: r = 0.805; MAL-QOM: r = 0.768).

Simpson, Conroy & Beaver (2015) examined convergent validity of the MAL-28 in a sample of 9 patients with stroke, by comparison with the FMA, Wolf Motor Function Test and Stroke Impact Scale, using Spearman’s correlation coefficient. There were excellent correlations between baseline MAL-AOU and FMA (ρ = 0.6889, p < 0.0132) and MAL-QOM and FMA (ρ = 0.7276, p < 0.0073).

Moreira Silva et al. (2018) examined convergent validity of the MAL-30 in a sample of 66 individuals with chronic stroke by comparison with the FMA-UE, using Spearman’s correlation coefficient. There was a significant and excellent correlation with the FMA-UE (MAL-AOU: r = 0.87; MAL-QOM: r = 0.87).

Chen et al. (2018) examined convergent validity of the MAL in a sample of 82 patients with stroke by comparison with accelerometry of the affected arm, using Pearson’s correlation coefficient. There was an adequate correlation with accelerometry (MAL-AOU: r = 0.47; MAL-QOM: r = 0.57).

Known Group:
Uswatte et al. (2006b) examined known-group validity of the MAL in a sample of 222 patients with subacute/chronic stroke and their caregivers. Correlations between the MAL and accelerometry ratio was stronger among patients with paresis of their dominant arm (MAL-AOU: r = 0.56; MAL-QOM: r = 0.59) than among patients with paresis of the non-dominant arm (MAL-AOU: r = 0.28; MAL-QOM: r = 0.34).

Responsiveness

Taub et al. (1993) reported on Effect sizes (ES) of the MAL in a sample of 9 patients with chronic stroke. Participants received two weeks of upper extremity restraint and measures were taken at baseline, post-treatment and follow-up (1 month, 2 years). Effect sizes were large from baseline to 1-month follow-up (2.80) and from baseline to 2-year follow-up (2.95).

Kunkel et al. (1999) reported on ES of the MAL in a sample of 5 patients with chronic stroke. Participants received two weeks of Constraint-Induced Movement Therapy (CIMT) and measures were taken at baseline, post-treatment and follow-up (3 months). Effect sizes were large from baseline to post-treatment (MAL-AOU: 9.57; MAL-QOM: 3.24), and from baseline to 3-month follow-up (MAL-AOU: 7.59; MAL-QOM: 1.99).

Taub et al. (1999) reported on ES of the MAL in a sample of patients with stroke who received CIMT and reported a large effect size for lower-functioning individuals (n = 11, d = 4.0) and higher functioning individuals (n = 40, d = 3.3). The ES was larger for lower-functioning patients due to lower variability in scores from baseline to post-treatment.

Miltner et al. (1999) reported on ES of the MAL in a sample of 15 patients with chronic stroke. Participants received two weeks of CIMT and measures were taken at baseline, post-treatment and follow-up (4 weeks and 6 months). Effect sizes were large from first contact to post-treatment (MAL-AOU: 2.07; MAL-QOM: 1.33), from first contact to 4 weeks post-treatment (MAL-AOU: 2.98; MAL-QOM: 1.70), and from first contact to 6-month follow-up (MAL-AOU: 2.68; MAL-QOM: 2.14).

van der Lee et al. (1999) reported on ES of the MAL in a sample of 66 patients with chronic stroke. Participants were randomly assigned to receive forced manual therapy or bimanual training based on neurodevelopmental techniques for two weeks. A 25-item modified version of the MAL was used. There were no significant between-group differences in MAL-QOM scores following treatment. There was a significant difference in MAL-AOU scores, in favour of forced use therapy. The mean difference in gain was 0.52 points (95% CI, 0.11-0.93). Improvements exceeded the Minimal Clinically Important Difference of 0.50 within both groups. The treatment effect was clinically relevant for patients with hemineglect.

van der Lee et al. (2004) examined responsiveness and longitudinal construct validity of the MAL-14 in a sample of 56 patients with chronic stroke who were randomized to receive CIMT or bimanual training for a 2-week intervention period. Responsiveness was measured by responsiveness ratios (RR). Results showed adequate responsiveness for the MAL-AOU and MAL-QOM (RR = 1.9, 2.0 respectively). Longitudinal validity was measured by comparing MAL change scores with the Action Research Arm Test (ARAT) change scores and a global change rating (GCR), using Spearman’s correlation coefficient. Change scores between measures were not significant nor highly correlated (MAL-AOU vs. ARAT: r = 0.16, p = 0.23; MAL-QOM vs. ARAT: r = 0.16, p = 0.25; MAL-AOU vs. GCR: r = 0.20, p = 0.15; MAL-QOM vs. GCR: r = 0.22, p = 0.10).

Uswatte et al. (2005b) examined responsiveness of the MAL-14 in a sample of 41 patients with chronic stroke who received CIMT or time-matched general fitness rehabilitation, and their caregivers. Responsiveness was measured by responsiveness ratios (RR). Results showed high responsiveness for patient scores (MAL-AOU: 3.2; MAL-QOM: 4.5), and caregiver scores (MAL-AOU: 4.3; MAL-QOM: 3.0).

Uswatte et al. (2005b) examined responsiveness of the MAL-14 in a sample of 27 patients with chronic stroke who received an automated form of constraint-induced movement therapy (AutoCITE) or general fitness rehabilitation. Responsiveness was measured by responsiveness ratios; results showed high responsiveness for the MAL-AOU and MAL-QOM (RR = 3.8, 5.0, respectively).

Hammer and Lindmark (2010) examined responsiveness and longitudinal construct validity of the MAL-30 in a sample of 30 patients with subacute stroke who were randomized to receive forced use therapy or standard upper extremity rehabilitation. Responsiveness was measured according to effect size (ES), standard response means (SRM) and responsiveness ratios (RR) from baseline to post-treatment (2 weeks), and from baseline to follow-up (3 months). Effect sizes for the MAL-AOU and MAL-QOM were moderate to large from baseline to post-treatment (MAL-AOU: 0.51; MAL-QOM: 0.54) and from baseline to follow-up (MAL-AOU: 1.02; MAL-QOM: 1.17), indicating sensitivity to change. Standard response means were large from baseline to post-treatment (MAL-AOU: 1.28; MAL-QOM: 1.03), and from baseline to follow-up (MAL-AOU: 1.14; MAL-QOM: 1.19). The greater SRM compared to ES reflects smaller variability in change scores than baseline scores. Responsiveness ratios were large from baseline to post-treatment (MAL-AOU: 1.22; MAL-QOM: 1.23) and from baseline to follow-up (MAL-AOU: 2.44; MAL-QOM: 2.69). Longitudinal construct was measured by comparison with the FMA-UE, ARAT, Motor Assessment Scale – Upper Extremity score (MAS-UE), 16-hole peg test (16HPT) and the Grippit ratio of isometric grip strength, using Spearman’s correlation coefficient. Correlations with the MAS-UE were significant and adequate from baseline to follow-up (MAL-AOU r = 0.53, MAL-QOM r = 0.47); and with the FMA-UE from baseline to post-treatment (MAL-AOU r = 0.44, MAL-QOM r = 0.67) and from baseline to follow-up (MAL-AOU r = 0.39, MAL-QOM r = 0.43).

Khan et al. (2013) examined responsiveness of the German MAL-30 in a sample of 42 patients with acute to chronic stroke, using standard response mean (SRM). Participants were stratified into two groups according to level of arm and hand function using the Chedoke McMaster Stroke Assessment (CSMA). Measures were taken at baseline, discharge from rehabilitation and 6-month follow-up. Change scores from the lower-function group (CSMA arm and hand score ≤ 6) revealed high responsiveness of the MAL-AOU and MAL-QOM from baseline to discharge (SRM = 0.93, 0.94 respectively) and baseline to follow-up (SRM = 0.95. 0.98 respectively), but poor from discharge to follow-up (SRM = 0.20, 0.42 respectively). Change scores from the high-function group (CSMA arm and hand score > 6) showed high responsiveness of the MAL-AOU and MAL-QOM from baseline to discharge (SRM = 1.43, 1.31 respectively) and from baseline to follow-up (SRM = 1.34, 1.33, respectively), but poor responsiveness from discharge to follow-up (SRM = 0.22, 0.24 respectively). The authors concluded that the MAL is a responsive measure when the intervention period is included in the measured time interval.

Simpson & Eng (2013) conducted a literature review of upper limb assessments commonly used in stroke rehabilitation, including the MAL. In studies that measured outcomes following CIMT, the observed change (i.e. patients’ perceptions of change, effect size) was 1.6-6.2 times larger than measures of functional change such as the ARAT or WMFT. Similarly, assessments which measure perceived function in the individual’s environment require larger percentage changes than laboratory-based performance measures to surpass the measurement error. Minimal Detectable Change for the MAL-AOU ranged from 72.5% to 86.7% (90% and 95% confidence levels).

Taub et al. (2013) reported on effect size (ES) of the Lower Functioning MAL (LF-MAL) in a sample of 6 individuals with chronic stroke who used orthotics/splints and adaptive equipment outside the laboratory over 6 sessions (Phase A), then received mCIMT + neurodevelopmental therapy for 15 consecutive weekdays with continued use of assistive devices (Phase B). Effect sizes were calculated from (i) baseline to pre-mCIMT; (ii) pre-mCIMT to post-mCIMT; and (iii) baseline to post-mCIMT and were large at all timepoints (ES = 2.6, 2.1, 3.0, respectively, p < 0.002).

Sterr et al. (2014) reported on treatment effect in a sample of 65 patients with chronic stroke. Participants received four different CIMT treatment protocols that differed in intensity and use of a constraint. Whole-group analysis showed a significant and large treatment effect from baseline to post-treatment (MAL-AOU: d = 1.19; MAL-QOM: d = 1.38); the treatment effect from post-treatment to 6-month follow-up was small but significant for the MAL-AOU only (d = 0.4). Treatment effect was not significant at 12-month follow-up. There was a significant positive association between training intensity and improvement in MAL-AOU scores.

Sensitivity & Specificity:
Chen et al. (2012) examined minimal detectable change (MDC) of the MAL. This study used data from the EXCITE trial, in which 222 patients with subacute/chronic stroke who were randomized to receive constraint induced movement therapy (CIMT) for 2 weeks (n = 106) or no treatment (n = 116). MDC with 90% confidence intervals was calculated from pre-post test data from the control group. The MDC of the MAL-AOU was 16.8% (Standard Error of the Mean 7.2%), indicating that a change in amount of use of the affected upper limb greater than 16.8% is required so as to be 90% certain that the change is not due to measurement error. The MDC (90% CI) for the MAL-QOM was 15.4% (SEM 6.6%), indicating higher sensitivity than the MAL-AOU scale. After treatment, the CIMT group showed an 84.6% increase in MAL-AOU scores and a 72.2% increase in MAL-QOM scores. Both MAL scores exceeded the MDC and were sensitive to change in the context of this intervention.

Simpson, Conroy & Beaver (2015) examined sensitivity of the MAL-28 in a sample of 9 patients with stroke, by comparison with the Fugl-Meyer Assessment, the Wolf Motor Function Test and Stroke Iimpact Scale. Measures were taken at baseline, post-treatment and follow-up, and correlations were analysed using Spearman’s correlation coefficient. Changes in MAL-AOU scores were sensitive to changes in SIS physical domain scores (ρ = 0.7342, p < 0.0243). Changes in MAL-QOM scores were sensitive to changes in WMFT Functional Ability scores (ρ = 0.6245, p < 0.0722).

References

Ashford, S., Slade, M., Malaprade, F., & Turner-Stokes, L. (2008). Evaluation of functional outcome measures for the hemiparetic upper limb: a systematic review. Journal of Rehabilitation Medicine, 40, 787-95.
DOI: 10.2340/16501977-0276

Cakar, E., Dincer, U., Zeki, M., Kilac, H., Tongur, N., & Taub, E. (2010). Turkish adaptation of Motor Activity Log-28. Turkish Journal of Physical Medicine and Rehabilitation, 56, 1-5.
http://www.ftrdergisi.com/eng/arsiv.asp

Chen, H.L., Lin, K.C., Hsieh, Y.W., Wu, C.Y., Liing, R.J., & Chen, C.L. (2018). A study of predictive validity, responsiveness, and minimal clinically important difference of arm accelerometer in real-world activity of patients with chronic stroke. Clinical Rehabilitation, 32(1), 75-83.
DOI: 10.1177/0269215517712042

Chen, S., Wolf, S.L., Zhang, Q., Thompson, P.A., & Winstein, C.J. (2012). Minimal detectable change of the Actual Amount of Use Test and the Motor Activity Log: the EXCITE trial. Neurorehabilitation and Neural Repair, 26(5), 507-14.
DOI: 10.1177/1545968311425048

Chuang, I.-C., Lin, K.-C., Wu, C.-Y., Hsieh, Y.-W., Liu, C.-T., & Chen, C.-L. (2017). Using Rasch analysis to validate the Motor Activity Log and the Lower Functioning Motor Activity Log in patients with stroke. Physical Therapy, 97(10), 1030-40.
DOI: 10.1093/pjpzs071

Dettmers, C., Teske, U., Hamzei, F., Uswatte, G., Taub, E., & Weiller, C. (2005). Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Archives of Physical Medicine and Rehabilitation, 86, 204-9.
DOI: 10.1016/j.apmr.2004.05.007

Hammer, A.M. & Lindmark, B. (2010). Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke. Disability and Rehabilitation, 32(14), 1184-93.
DOI: 10.3109/09638280903437253

Huseyinsinoglu, B.E., Ozdincler, A.R., Ogul, O.E., & Krespi, Y. (2011). Reliability and validity of Turkish version of Motor Activity Log-28. Turkish Journal of Neurology, 17(2), 83-9.

Johnson, A., Judkins, L., Morris, D.M., Uswatte, G., & Taub, E. (2003). The validity and reliability of the 45-item Upper Extremity Motor Activity Log. Journal of Neurologic Physical Therapy, 27(4), 172.

Khan, C.M. & Oesch, P. (2013). Validity and responsiveness of the German version of the Motor Activity Log for the assessment of self-perceived arm use in hemiplegia after stroke. NeuroRehabilitation, 33, 413-21.
DOI: 10.3233/NRE-130972

Kunkel, A., Kopp, B., Muller, G., Villringer, K., Villringer, A., Taub, E., & Flor, H. (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of Physical Medicine & Rehabilitation, 80, 624-8.
PMID: 10378486.

Li, K.-Y., Lin, K.-C., Wang, T.-N., Wu, C.-Y., Huang, Y.-H., & Ouyang, P. (2012). Ability of three motor measures to predict functional outcomes reported by stroke patients after rehabilitation. NeuroRehabilitation, 30, 267-75.
DOI: 10.3233/NRE-2012-0755

Lin, K.-C., Chuang, L.-L., Wu, C.-Y., Hsieh, Y.-W., & Chang, W.-Y. (2010a). Responsiveness and validity of three dexterous function measures in stroke rehabilitation. Journal of Rehabilitation Research & Development, 47(6), 563-72.
DOI:10.1682/JRRD.2009.09.0155

Lin, K.-C., Fu, T., Wu, C.-Y., Hsieh, Y.-W., Chen, C.-L., & Lee, P.-C. (2010b). Psychometric comparisons of the Stroke Impact Scale 3.0 and Stroke-Specific Quality of Life Scale. Quality of Life Research, 19(3), 435-43.
DOI 10.1007/s11136-010-9597-5

Miltner, W.H.R., Bauder, H., Sommer, M., Dettmers, C., & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke, 30(3), 586-92.
PMID: 10066856

Page, S. (2003). Forced use after TBI: promoting plasticity and function through practice. Brain Injury, 17(8), 675-84.
DOI: 10.1080/0269905031000107160

Pereira, N.D., Ovando, A.C., Michaelsen, S.M., Anjos, S.M.D., Lima, R.C.M., Nascimento, L.R., & Teixeira-Salmela, L.F. (2012). Motor Activity Log-Brazil: reliability and relationships with motor impairments in individuals with chronic stroke. Arquivos de Neuro-Psiquiatria, 70(3), 196-201.

Saliba, V.A., Magalhães, L.C., Faria, C.D., Laurentino, G.E.C., Cassiano, J.G., Teixeira-Salmela, L.F. (2011). [Cross-cultural adaptation and analysis of the psychometric properties of the Brazilian version of the Motor Activity Log]. Revista Panamericana de Salud Pública, 30(3), 262-71.
https://www.researchgate.net/publication/266487017

Santisteban, L., Teremetz, M., Bleton, J.-P., Baron, J.-C., Maier, M.A., & Lindberg, P.G. (2016). Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. Plos One, May 6.
DOI: 10.1371/journal.pone.0154792

Shindo, K., Oba, H., Hara, J., Ito, M., Hotta, F. & Liu, M. (2015). Psychometric properties of the simple test for evaluating hand function in patients with stroke. Brain Injury, 29(6), 772-6.
DOI: 10.3109/02699052.2015.1004740

Silva, E.S.M., Pereira, N.D., Gianlorenço, A.C.L., & Camargo, P.R. (2018). The evaluation of non-use of the upper limb in chronic hemiparesis is influenced by the level of motor impairment and difficulty of the activities – proposal of a new version of the Motor Activity Log. Physiotherapy Theory and Practice,
DOI: 10.1080/09593985.2018.1460430

Simpson, A., Conroy, S., & Bever, C. (2015). Preliminary assessment of the Motor Activity Log-28 in patients with chronic stroke. Neurology, 84(14 Supplement), P5.174.

Simpson, L.A. & Eng, J.J. (2013). Functional recovery following stroke: capturing changes in upper extremity function. Neurorehabilitation and Neural Repair, 27(3), 240-50.
DOI: 10.1177/1545968312461719

Sterr, A., O’Neill, D., Dean, P.J.A., & Herron, K.A. (2014). CI therapy is beneficial to patients with chronic low-functioning hemiparesis after stroke. Frontiers in Neurology, 5, 204.
DOI: 10.3389/fneur.2014.00204

Taub, E., Miller, N.E., Novack, T.A., Cook, E.W., Fleming, W.C., Nepomuceno, C.S., Connel, J.S., & Crago, J.E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74(4), 347-54.
PMID: 8466415

Taub, E. & Uswatte, G. (2000). Constraint-induced movement therapy and massed practice. Stroke, 31(4), 986-8.
PMID: 10754013.

Taub, E., Uswatte, G., Bowman, M.H., Mark, V.W., Delgado, A., Bryson, C., Morris, D., & Bishop-McKay, S. (2013). Constraint-induced movement therapy combined with conventional neurorehabilitation techniques in chronic stroke patients with plegic hands: a case series. Archives of Physical Medicine and Rehabilitation, 94, 86-94.
DOI: 10.1016/j.apmr.2012.07.029

Taub, E., Uswatte, G., & Pidikiti, R. (1999). Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. Journal of Rehabilitation Research & Development, 36(3), 237-51.
PMID: 10659807

Uswatte. G. & Taub, E. (2005). Implications of the learned nonuse formulation for measuring rehabilitation outcomes: lessons from constraint-induced movement therapy. Rehabilitation Psychology, 50(1), 34-42.
DOI: 10.1037/0090-5550.50.1.34

Uswatte, G., Giuliani, C., Winstein, C., Zeringue, A., Hobbs, L., & Wolf, S.L. (2006a). Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: evidence from the extremity constraint-induced therapy evaluation trial. Archives of Physical Medicine and Rehabilitation, 87, 1340-5.
DOI: 10.1016/j.apmr.2006.06.006

Uswatte, G., Taub, E., Morris, D., Light, K., & Thompson, P.A. (2006b). The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology, 67(7), 1189-94.
https://www.ncbi.nlm.nih.gov/pubmed/17030751

Uswatte, G., Foo, W.L., Olmstead, H., Lopez, K., Holand, A., & Simms, L.B. (2005a). Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 86, 1498-1501.
PMID: 16003690

Uswatte, G., Taub, E., Morris, D., Vignolo, M., & McCulloch, K. (2005b). Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke, 36(11), 2493-6.
DOI: 10.1161/01.STR.0000185928.90848.2e

van der Lee, J.H., Beckerman, H., Knol, D.L., de Vet, H.C.W., & Bouter, L.M. (2004). Clinimetric properties of the Motor Activity Log for the assessment of arm use in hemiparetic patients. Stroke, 35, 1410-14.
DOI: 10.1161/01.STR.0000126900.24964.7e

van der Lee, J.H., Wagenaar, R.C., Lankhorst, G.J., Vogelaar, T.W., Deville, W.L., & Bouter, L.M. (1999). Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke, 30, 2369-75.

Wu, C.-Y., Chuang, L.-L., Lin, K.-C., & Horng, Y.-S. (2011). Responsiveness and validity of two outcome measures of instrumental activities of daily living in stroke survivors receiving rehabilitative therapies. Clinical Rehabilitation, 25, 175-83.
DOI: 10.1177/0269215510385482