Motor-Free Visual Perception Test (MVPT)

Overview

The reliability and validity of the MVPT has not been well studied. To our knowledge, the creators of the MVPT have personally gathered the majority of psychometric data that are currently published on the scale. In addition, the majority of the existing psychometric studies have been conducted using the original MVPT only, and few studies have examined the validity of the MVPT-R and MVPT-3. Further investigation on the reliability and validity of the original MVPT, MVPT-R and MVPT-3 is therefore recommended.

Reliability

Original MVPT

Internal consistency.
Colarusso and Hammill (1996) calculated the internal consistency reliability.

Test-retest reliability.
Colarusso and Hammill (1972) examined the test-retest reliability, ranging from r = 0.77 to r = 0.83 at different age levels, with a mean coefficient of r = 0.81 for the total sample.

Inter-rater reliability.
Has not been investigated.

MVPT-R

Internal consistency.
Has not been investigated.

Test-retest reliability.
Only one study evaluating the reliability of the MVPT-R has been reported in the literature. Burtner, Qualls, Ortega, Morris, and Scott (2002) administered the MVPT-R to a group of 38 children with learning disabilities and 37 children with age-appropriate development (aged 7 to 10 years) on two separate occasions within 2.5 weeks. Intraclass correlation coefficients (ICCs) for perceptual quotient scores ranged from adequate to excellent (ranging from ICC = 0.63 to ICC = 0.79). Perceptual age scores also ranged from adequate to excellent (ICC = 0.69 to ICC = 0.86). Pearson product moment correlations for perceptual quotient scores ranged from adequate to excellent (r = 0.70 to r = 0.80) and perceptual age scores were excellent , ranging from r = 0.77 to r = 0.87. These results suggest that the MVPT-R has adequate test-retest reliability, with more stability in visual perceptual scores for children with learning disabilities.

Inter-rater reliability.
Has not been investigated.

MVPT-3

Internal consistency.
Colarusso and Hammill (2003) computed Cronbach’s coefficient alphas for each age group. Alpha coefficients ranged from poor to excellent (alpha = 0.69 to alpha = 0.90). In children aged 4, 5, and 7, alpha coefficients were 0.69, 0.76, and 0.73, respectively. Reliability coefficients for all other age groups were excellent (alpha’s exceed 0.80).

Test-retest reliability.
Colarusso and Hammill (2003) examined the test-retest reliability (0.87 and 0.92, respectively), suggesting that the MVPT-3 is relatively stable over time.

Inter-rater reliability.
Has not been investigated.

Validity

Content

Only the content validity of the original MVPT has been provided.

The content of the MVPT was based on item analyses as well as the five visual perceptual categories proposed by Chalfant and Scheffelin (1969). The authors examined item bias, including the effects of gender, residence, and ethnicity. Performance on each item was compared for differing groups to determine any biased content. Only three items appeared to function differently based on group membership. The authors examined these items and chose not to eliminate the items based on other psychometric data.

Construct

Known groups.

Original MVPT.
Su et al. (2000) compared the perceptual performance of 22 patients with intracerebral hemorrhage to 22 patients with ischemia early after stroke. The MVPT was not found to be discriminatively sensitive to side of lesion (left or right) or type of lesion (intracerebral hemorrhage vs. ischemic).

York and Cermak (1995) examined the performance of 45 individuals with either right cerebrovascular accident, left cerebrovascular accident, or individuals without cerebrovascular accident using the MVPT. Patients with right hemisphere lesions demonstrated poor performance on the MVPT in comparison to patients with left hemisphere lesions and a non-stroke group. However, the degree of difference between the mean scores of each group, as calculated using effect size, (ES = 0.67 and 0.54, respectively), suggesting that the MVPT can discriminate between patients with stroke versus individuals without stroke.

MVPT-3.
Colarusso and Hammill (2003) examined MVPT-3 performance differences among individuals who were developmentally delayed, or who had experienced a head injury, or had a learning disability and compared their MVPT-3 performance to the general population mean MVPT-3 score of 100. It was hypothesized that each of these groups should display lower scores on the MVPT-3 when compared to the general population. Individuals classified as developmentally delayed had a mean MVPT-3 score of 69.46 which falls more than two standard deviations below the mean. Individuals with head injury had a mean score of 80.16, falling approximately 1.33 standard deviations below the mean. The group with learning disability had an average score of 88.24. The lower MVPT-3 scores for each of these three groups lends support for the construct validity of the test.

Convergent/Discriminant.

Original MVPT.
Su et al. (2000) found excellent correlations between the MVPT and the Loewenstein Occupational Therapy Cognitive Assessment subscales of Visuo-motor organization and Thinking operations (r = 0.70 and 0.72). Adequate correlations between the Rivermead Perceptual Assessment Battery subscales of Sequencing (0.39) and Figure-ground discrimination (0.41) were found. An excellent correlation between the MVPT and the Spatial awareness subscale of the Rivermead Perceptual Assessment Battery was observed (0.72).

Cate and Richards (2000) investigated the relationship between basic visual functions (acuity, visual field deficits, oculomotor skills and visual attention/scanning) and higher-level visual-perceptual processing skills (visual closure and figure-ground discrimination) in patients with stroke using a Pearson product-moment correlation analysis. An excellent correlation of r = 0.75 was observed between vision screening scores and scores from the MVPT.

Criterion

Concurrent.

Original MVPT.
The following information is from a review article by Brown, Rodger, and Davis (2003):

  • Correlations between the MVPT and the Frostig Developmental Test of Visual Perception ranged from adequate to excellent , from r = 0.38 to r = 0.60 (Frostig, Lefever, & Whittlesey, 1966).
  • Correlations between the MVPT and the Developmental Test of Visual Perception ranged from poor to excellent , r = 0.27 to r = 0.74 (Hammill, Pearson, & Voress, 1993).
  • Correlation between the MVPT and the Matching subscale of Metropolitan Readiness Tests was adequate , r = 0.40 (Hildreth, Griffiths, & McGauvran, 1965).
  • Correlations between the MVPT and the Word Study Skills and Arithmetic subscales of Stanford Achievement Tests (Primary) were adequate , from r = 0.37 to r = 0.42 (Kelly, Madden, Gardner, & Rudman, 1964).
  • Correlations between the MVPT and the Durrell Analysis of Reading Difficulties were adequate , ranging from r = 0.33 to r = 0.46 (Durrell, 1955).
  • Correlation between the MVPT and the Slosson Intelligence Test was adequate , r = 0.31 (Slosson, 1963).
  • Correlation between the MVPT and the Pinter-Cunningham Primary Intelligence Test was adequate , r = 0.32 (Pintner & Cunningham, 1965).

Colarusso and Hammill (1996) concluded that the MVPT measures the construct of visual perception adequately because the MVPT correlated more highly with measures of visual perception (median r = 0.49) than it did with tests of intelligence (median r = 0.31) or school performance (median r = 0.38).

Predictive.

Original MVPT.
Mazer et al. (1998) examined whether the MVPT could predict on-road driving outcome in 84 patients with stroke. Patients were given a pass or fail based on their driving behavior. The was found to be the most predictive of driving outcome out of a number of perceptual tests that were administered (the Complex Reaction Timer, the Single Letter Cancellation Test, the Double Letter Cancellation Test, the Money Road Map Test of Direction Sense, the Trail Making Test A and B, the Bells Test, and the Charron Test). Patients who scored ? 30 on the MVPT were 8.7 times more likely to fail the on-road evaluation compared to those who scored >30 (positive predictive value = 86.1%; right sided lesions = 94%; left-sided lesions = 80%). Furthermore, patients who performed poorly on both the MVPT and the Trail Making test B (a test of visual conceptual and visuomotor tracking) were 22 times more likely to fail the on-road evaluation as compared with those who did well on both tests. However, the MVPT was not highly predictive of a pass, such that even at the highest possible scores, half of the subjects passed and half failed the on-road evaluation.

Korner-Bitensky et al. (2000) also examined whether the MVPT could predict on-road driving test outcome in 269 patients with stroke. A cutoff of ? 30 was used to indicate poor visual perception and > 30 indicated good perception. A low positive predictive value of 60.9% (the proportion of people who had a low score on the MVPT and failed the test) and a low negative predictive value (the proportion of people who had a high score on the MVPT and passed the driving test) of 64.2% were found. Logistic regression revealed the best predictor of driving failure to be increased age, a right hemisphere lesion and a low score. The results of this study demonstrate that the MVPT may not be as highly predictive of driving ability in patients with stroke as previous research had indicated.

Ball et al. (2006) examined whether scores on the visual closure items of the MVPT were predictive of future at-fault motor vehicle collisions in a cohort of older drivers (over the age of 55). The MVPT was found to be predictive, such that individuals who made four or more errors on the MVPT were 2.10 times more likely to crash as those who made three or fewer errors.

Responsiveness

Not applicable.

References
  • Ball, K. K., Roenker, D. L., Wadley, V. G., Edwards, J. D., Roth, D. L., McGwin, G., Raleigh, R., Joyce, J. J., Cissell, G. M., Dube, T. (2006). Can high-risk older drivers be identified through performance-based measures in a department of motor vehicles setting? Journal of the American Geriatrics Society, 54, 77-84.
  • Bhavnani, G., Cockburn, J., Whiting, S., Lincoln, N. (1983). The reliability of the Rivermead perceptual assessment. British Journal of Occupational Therapy, 52, 17-19.
  • Bouska, M. J., Kwatny, E. (1982). Manual for the application of the motor-free visual perception test to the adult population. Philadelphia (PA): Temple University Rehabilitation Research and Training Center.
  • Brown, T. G., Rodger, S., Davis, A. (2003). Motor-Free Visual Perception Test – Revised: An overview and critique. British Journal of Occupational Therapy, 66(4), 159-167.
  • Burtner, P. A., Qualls, C., Ortega, S. G., Morris, C. G., Scott, K. (2002). Test-retest of the Motor-Free Visual Perception Test Revised (MVPT-R) in children with and without learning disabilities. Physical and Occupational Therapy in Pediatrics, 22(3-4), 23-36.
  • Cate, Y., Richards, L. (2000). Relationship between performance on tests of basic visual functions and visual-perceptual processing in persons after brain injury. Am J Occup Ther, 54(3), 326-334.
  • Chalfant, J. C., Scheffelin, M. A. (1969). Task force III. Central processing dysfunctions in children: a review of research. Bethesda, MD: US Department of Health, Education and Welfare.
  • Colarusso, R. P., Hammill, D. D. (1972). Motor-free visual perception test. Novato CA: Academic Therapy Publications.
  • Colarusso, R. P., Hammill, D. D. (1996). Motor-free visual perception test–revised. Novato CA: Academic Therapy Publications.
  • Colarusso, R. P., & Hammill, D.D. (2003). The Motor Free Visual Perception Test (MVPT-3). Navato, CA: Academic Therapy Publications.
  • Durrell, D. (1955). Durrell Analysis of Reading Difficulty. Tarrytown, New York: Harcourt, Brace and World.
  • Frostig, M., Lefever, D. W., Whittlesey, J. R. B. (1966). Administration and scoring manual for the Marianne Frostig Developmental Test of Visual Perception. Palo Alto, CA: Consulting Psychologists Press.
  • Hammill, D. D., Pearson, N. A., Voress, J. K. (1993). Developmental Test of Visual Perception. 2nd ed. Austin, TX: Pro Ed.
  • Hildreth, G. H., Griffiths, N. L., McGauvran, M. E. (1965). Metropolitan Readiness Tests. New York: Harcourt, Brace and World.
  • Korner-Bitensky, N. A., Mazer, B. L., Sofer, S., Gelina, I., Meyer, M. B., Morrison, C., Tritch, L., Roelke, M. A., White, M. (2000). Visual testing for readiness to drive after stroke: A multiscenter study. Am J Phys Med Rehabil, 79(3), 253-259.
  • Kelly, T. L., Madden, R., Gardner, E. F., Rudman, H. C. (1964). Stanford Achievement Tests. New York: Harcourt, Brace and World.
  • Mazer, B. L., Korner-Bitensky, N., Sofer, S. (1998). Predicting ability to drive after stroke. Arch of Phys Med Rehabil, 79, 743-750.
  • McCane, S. J. (2006). Test review: Motor-Free Visual Perception Test.Journal of Psychoeducational Assessment, 24, 265-272.
  • Mercier, L., Herbert, R., Gauthier, L. (1995). Motor free visual perception test: Impact of vertical answer cards position on performance of adults with hemispatial neglect. Occup Ther J Res, 15, 223-226.
  • Mercier, L., Hebert, R., Colarusso, R., Hammill, D. (1996). Motor-Free Visual Perception Test – Vertical. Novato, CA: Academic Therapy Publications.
  • Pintner, R., Cunningham, B. V. (1965). Pintner-Cunningham Primary Test. New York: Harcourt, Brace and World.
  • Sattler, J.M. (2001). Assessment of children: Cognitive applications (4th ed.). San Diego, CA: Jerome M. Sattler.
  • Slosson, R. L. (1963). Slosson Intelligence Test. East Aurora, NY: Slosson Educational Publications.
  • Su, C-Y., Charm, J-J., Chen, H-M., Su, C-J., Chien, T-H., Huang, M-H. (2000). Perceptual differences between stroke patients with cerebral infarction and intracerebral hemorrhage. Arch Phys Med Rehabil, 81, 706-714.
  • Whiting, S., Lincoln, N., Bhavnani, G., Cockburn, J. (1985). The Rivermead perceptual assessment battery. Windsor: NFER-Nelson.
  • York, C. D., Cermak, S. A. (1995). Visual perception and praxis in adults after stroke. Am J Occup Ther, 49(6), 543-550.